Category Archives: Supplements

Orthosilicic Acid Stimulates Collagen and Osteoblasts In Vitro

Abstract

Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro.

Silicon deficiency in animals leads to bone defects. This element may therefore play an important role in bone metabolism. Silicon is absorbed from the diet as orthosilicic acid and concentrations in plasma are 5-20 microM. The in vitro effects of orthosilicic acid (0-50 microM) on collagen type 1 synthesis was investigated using the human osteosarcoma cell line (MG-63), primary osteoblast-like cells derived from human bone marrow stromal cells, and an immortalized human early osteoblastic cell line (HCC1). Collagen type 1 mRNA expression and prolyl hydroxylase activity were also determined in the MG-63 cells. Alkaline phosphatase and osteocalcin (osteoblastic differentiation) were assessed both at the protein and the mRNA level in MG-63 cells treated with orthosilicic acid. Collagen type 1 synthesis increased in all treated cells at orthosilicic acid concentrations of 10 and 20 microM, although the effects were more marked in the clonal cell lines (MG-63, HCCl 1.75- and 1.8-fold, respectively, P < 0.001, compared to 1.45-fold in the primary cell lines). Treatment at 50 microM resulted in a smaller increase in collagen type 1 synthesis (MG-63 1.45-fold, P = 0.004). The effect of orthosilicic acid was abolished in the presence of prolyl hydroxylase inhibitors. No change in collagen type 1 mRNA level was seen in treated MG-63 cells. Alkaline phosphatase activity and osteocalcin were significantly increased (1.5, 1.2-fold at concentrations of 10 and 20 microM, respectively, P < 0.05). Gene expression of alkaline phosphatase and osteocalcin also increased significantly following treatment. In conclusion, orthosilicic acid at physiological concentrations stimulates collagen type 1 synthesis in human osteoblast-like cells and enhances osteoblastic differentiation.

Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF…
Bone Feb 2003
PMID: 12633784

Review: Silicon

Abstract

Silicon and bone health.

Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health.

Jugdaohsingh R
J Nutr Health Aging
PMID: 17435952 | Free Full Text

Strontium Ranelate Associated with Unfavorable Cardiac Risk

Abstract

Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate.

National registers showed that a large proportion of patients treated with strontium ranelate have conditions that may now contraindicate use. The risk of death in strontium ranelate-treated patients was significantly higher than that seen in users of other osteoporosis drugs even after adjusting for cardiovascular risk factor profile.
The European Medicines Agency (EMA) recently warned that strontium ranelate should be avoided in patients with ischaemic heart disease (IHD), peripheral vascular disease (PVD) or cerebrovascular disease (CVD), and in patients with uncontrolled hypertension. We investigated to what extent patients beginning strontium ranelate had cardiovascular conditions and determined the rates of MI, stroke and death.
Using the Danish National Prescription Database, we identified all 3,252 patients aged 50+ who began strontium ranelate in 2005-2007 and 35,606 users of other osteoporosis drugs as controls. Hospital contacts and causes of death were retrieved from national registers.
Patients starting strontium were older than patients treated with other osteoporosis drugs and more likely to suffer from IHD, PVD or CVD (combined prevalence 19.2 % in female users and 29.5 % in male users). The adjusted risk of MI was not significantly increased (women: HR 1.05 [95 % CI 0.79-1.41, p = 0.73]; men: 1.28 [0.74-2.20, p = 0.38]). For stroke, the adjusted HR was 1.23 (0.98-1.55, p = 0.07) in women and 1.64 (0.99-2.70, p = 0.05) in men. All-cause mortality was higher in strontium users (women: adjusted HR 1.20 [1.10-1.30, p < 0.001]; men: adjusted HR 1.22 [1.03-1.45, p < 0.05]).
Patients treated with strontium ranelate have an unfavourable cardiovascular risk profile compared with users of other osteoporosis drugs. However, only the risk of death differed significantly from the rates observed in users of other osteoporosis drugs adjusted for risk factor profile. A large proportion of patients currently treated with strontium ranelate have conditions that would now be considered contraindications according to EMA.

Abrahamsen B, Grove EL, Vestergaard P
Osteoporos Int Feb 2014
PMID: 24322475

Strontium Ranelate Not Associated with Heart Attacks or Other Cardiac Events

Abstract

Ischaemic cardiac events and use of strontium ranelate in postmenopausal osteoporosis: a nested case-control study in the CPRD.

We explored the cardiac safety of the osteoporosis treatment strontium ranelate in the UK Clinical Practice Research Datalink. While known cardiovascular risk factors like obesity and smoking were associated with increased cardiac risk, use of strontium ranelate was not associated with any increase in myocardial infarction or cardiovascular death.
It has been suggested that strontium ranelate may increase risk for cardiac events in postmenopausal osteoporosis. We set out to explore the cardiac safety of strontium ranelate in the Clinical Practice Research Datalink (CPRD) and linked datasets.
We performed a nested case-control study. Primary outcomes were first definite myocardial infarction, hospitalisation with myocardial infarction, and cardiovascular death. Cases and matched controls were nested in a cohort of women treated for osteoporosis. The association with exposure to strontium ranelate was analysed by multivariate conditional logistic regression.
Of the 112,445 women with treated postmenopausal osteoporosis, 6,487 received strontium ranelate. Annual incidence rates for first definite myocardial infarction (1,352 cases), myocardial infarction with hospitalisation (1,465 cases), and cardiovascular death (3,619 cases) were 3.24, 6.13, and 14.66 per 1,000 patient-years, respectively. Obesity, smoking, and cardiovascular treatments were associated with significant increases in risk for cardiac events. Current or past use of strontium ranelate was not associated with increased risk for first definite myocardial infarction (odds ratio [OR] 1.05, 95 % confidence interval [CI] 0.68-1.61 and OR 1.12, 95 % CI 0.79-1.58, respectively), hospitalisation with myocardial infarction (OR 0.84, 95 % CI 0.54-1.30 and OR 1.17, 95 % CI 0.83-1.66), or cardiovascular death (OR 0.96, 95 % CI 0.76-1.21 and OR 1.16, 95 % CI 0.94-1.43) versus patients who had never used strontium ranelate.
Analysis in the CPRD did not find evidence for a higher risk for cardiac events associated with the use of strontium ranelate in postmenopausal osteoporosis.

Cooper C, Fox KM, Borer JS
Osteoporos Int Feb 2014
PMID: 24322476 | Free Full Text

Boron Increases Strength and Bone Minerals in Rabbits

Abstract

Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet.

Hakki SS, Dundar N, Kayis SA, Hakki EE…
J Trace Elem Med Biol Apr 2013
PMID: 22944583

Cladrin Increases Osteoblast Prolifertion in Rats

Abstract

Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats.

Dietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway. On the other hand, formononetin maximally stimulated osteoblast differentiation at 100 nM that involved p38 MAPK pathway but had no effect on osteoblast proliferation. Unlike daidzein, these two compounds neither activated estrogen receptor in osteoblast nor had any effect on osteoclast differentiation. Daily oral administration of each of these compounds at 10.0 mg kg(-1) day(-1) dose to recently weaned female Sprague-Dawley rats for 30 consecutive days, increased bone mineral density at various anatomic positions studied. By dynamic histomorphometry of bone, we observed that rats treated with cladrin exhibited increased mineral apposition and bone formation rates compared with control, while formononetin had no effect. Cladrin had much better plasma bioavailability compared with formononetin. None of these compounds exhibited estrogen agonistic effect in uteri. Our data suggest that cladrin is more potent among the two in promoting parameters of peak bone mass achievement, which could be attributed to its stimulatory effect on osteoblast proliferation and better bioavailability. To the best of our knowledge, this is the first attempt to elucidate structure-activity relationship between the methoxylated forms of daidzein and their osteogenic effects.

Gautam AK, Bhargavan B, Tyagi AM, Srivastava K…
J. Nutr. Biochem. Apr 2011
PMID: 20579866

Cladrin Increases Bone Formation and Strength in Rats

Abstract

Positive skeletal effects of cladrin, a naturally occurring dimethoxydaidzein, in osteopenic rats that were maintained after treatment discontinuation.

Effects of cladrin treatment and withdrawal in osteopenic rats were studied. Cladrin improved trabecular microarchitecture, increased lumbar vertebral compressive strength, augmented coupled remodeling, and increased bone osteogenic genes. A significant skeletal gain was maintained 4 weeks after cladrin withdrawal. Findings suggest that cladrin has significant positive skeletal effects.
We showed that a standardized extract of Butea monosperma preserved trabecular bone mass in ovariectomized (OVx) rats. Cladrin, the most abundant bioactive compound of the extract, promoted peak bone mass achievement in growing rats by stimulating osteoblast function. Here, we studied the effects of cladrin treatment and withdrawal on the osteopenic bones.
Adult female Sprague-Dawley rats were OVx and left untreated for 12 weeks to allow for significant estrogen deficiency-induced bone loss, at which point cladrin (1 and 10 mg/kg/day) was administered orally for another 12 weeks. Half of the rats were killed at the end of the treatments and the other half at 4 weeks after treatment withdrawal. Sham-operated rats and OVx rats treated with PTH or 17β-estradiol (E2) served as various controls. Efficacy was evaluated by bone microarchitecture using microcomputed tomographic analysis and fluorescent labeling of bone. qPCR and western blotting measured mRNA and protein levels in bone and uterus. Specific ELISA was used for measuring levels of serum PINP and urinary CTx.
In osteopenic rats, cladrin treatment dose dependently improved trabecular microarchitecture, increased lumbar vertebral compression strength, bone formation rate (BFR), cortical thickness (Cs.Th), serum PINP levels, and expression of osteogenic genes in bones; and reduced expression of bone osteoclastogenic genes and urinary CTx levels. Cladrin had no uterine estrogenicity. Cladrin at 10 mg/kg maintained acquired skeletal gains 4 weeks after withdrawal. Cladrin had positive skeletal effects in osteopenic rats that were maintained after treatment withdrawal.

Khan K, Sharan K, Swarnkar G, Chakravarti B…
Osteoporos Int Apr 2013
PMID: 22932734

Soy Isoflavones + Vitamin D3 Improve Bone Density, Stimulate Osteoblasts, and Inhibit Osteoclasts in Ovariectomized Rats

Abstract

Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats.

Several studies have shown that soy isoflavones have estrogen-like activities and might constitute an alternative to hormone replacement treatment. The present study investigated the effects of soy isoflavones alone and combined with vitamin D3 on prevention of bone loss.
Sprague-Dawley rats were sham-operated (n = 8) or ovariectomized (OVX; n = 40), and then the OVX rats were randomly assigned to five groups that were untreated or treated for 14 wk with vitamin D3, 17β-estradiol, soy isoflavone extract (SIE), or vitamin D3 plus SIE. The effects of the isoflavones and 1α,25(OH)(2)D(3) on cultured osteoblasts and osteoclasts also were investigated.
In OVX rats, the bone mineral density and trabecular bone volume loss were improved by 17β-estradiol, SIE, or SIE plus vitamin D3 treatment. SIE treatment was more effective than vitamin D3 or 17β-estradiol in inhibiting increases in serum tumor necrosis factor-α levels and osteoblast osteoprotegerin expression. SIE plus vitamin D3 was more effective in increasing osterix expression than each alone. Bone cell cultures showed that the isoflavones induced preosteoblasts to differentiate into osteoblasts and increased osteoblast mineralization. Isoflavones inhibited preosteoclasts and osteoclast proliferation and decreased osteoclast resorption. The combination of isoflavones plus 1α,25(OH)(2)D(3) showed additive effects on the increase in cell proliferation of cultured preosteoblasts.
Treatment with soy isoflavones might be an alternative to hormone replacement therapy in decreasing bone loss from postmenopausal estrogen deficiency. In addition, there are further effects on increasing transcription factor osterix expression and preosteoblast proliferation when these were combined with vitamin D3.

Chang KL, Hu YC, Hsieh BS, Cheng HL…
Nutrition Jan 2013
PMID: 22858193

Clothing Style May Lower Vitamin D and Increase Fractures in Italian Nuns

Abstract

Low 25-hydroxyvitamin D levels and low bone density assessed by quantitative ultrasonometry in a cohort of postmenopausal Italian nuns.

This study was aimed at evaluating the effect of clothing style on bone mass and fractures in 70 postmenopausal nuns residing in a monastery in Naples. Sixty healthy women matched for age, body mass index, and menopausal status were enrolled as controls. Each participant underwent measurement by quantitative ultrasonometry (QUS) using a DBM Sonic Bone Profiler (IGEA S.p.A., Carpi, Modena, Italy) at proximal phalanges, responded to questionnaires regarding lifestyle, calcium intake, medical history, including clinical fragility fractures, and was submitted to routine biochemical assessment. A significant reduction in ultrasonometric parameters of bone mass was found in nuns compared with controls (p from 0.007 to <0.0001). 25-hydroxyvitamin D (25-OH vit D) levels were reduced by more than 50% in nuns (9.8 ± 4.2 vs 23.5 ± 5.7 nmol/L; p < 0.0001), whereas their estimated daily calcium intake was higher (1.004 ± 0.23 vs 0.721 ± 0.25 g of controls; p = 0.0007). Age at menopause was significantly lower in nuns’ group (p = 0.016). Incidence of fractures was higher in nuns (39% vs 10%; p = 0.0029), and the best predictors of fractures were age at menopause (odds ratio [OR]: 1.12; 95% confidence interval [CI]: 1.01-1.30), amplitude-dependent speed of sound T-score (OR: 1.15; 95% CI: 1.03-1.63), and bone transmission time T-score (OR: 1.30; 95% CI: 1.15-1.81). This study documented low 25-OH vit D levels, increased frequency of clinical fractures, and low bone mass detected by QUS in Southern Italian nuns.

Nuzzo V, Zuccoli A, de Terlizzi F, Colao A…
J Clin Densitom
PMID: 22832035

Ferutinin Inhibits Resorption in Ovariectomized Rats

Abstract

Effects of different doses of ferutinin on bone formation/resorption in ovariectomized rats.

This study analyzes the effects of different doses of ferutinin on bone loss caused by estrogen deficiency in ovariectomized rats, in comparison with estradiol benzoate. Thirty female Sprague-Dawley rats were ovariectomized and treated for 30 days from the day after ovariectomy. Static/dynamic histomorphometric analyses were performed on trabecular and cortical bone of lumbar vertebrae and femurs. Very low weight increments were recorded only in all F-OVX groups, with respect to the others. Although the great differences in weight, that could imply a decrease of bone mass in F-OVX groups compared to the control ovariectomized group (C-OVX), trabecular bone in lumbar vertebrae did not show significant differences, suggesting that ferutinin, opposing estrogen deficiency, inhibits bone resorption. Newly formed cortical bone was always low in all F-OVX groups and high in C-OVX, suggesting that it is mainly devoted in answering mechanical demands. In contrast, in distal femoral metaphyses, trabecular bone was reduced and the number of osteoclasts was increased in C-OVX with respect to all other groups, suggesting that it is mainly devoted in answering metabolic demands; moreover, ferutinin dose of 2 mg/kg seemed to be more effective than the lower doses used and estrogens, particularly in those skeletal regions with higher metabolic activity. Our results suggest that the role of ferutinin in preventing osteoporosis caused by estrogen deficiency is expressed in decreasing bone erosion; moreover, in all F-OVX groups bone turnover is very low and seems correlated to the trivial body weight increase, which, in turn, depends on ferutinin treatment.

Cavani F, Ferretti M, Carnevale G, Bertoni L…
J. Bone Miner. Metab. Nov 2012
PMID: 22828874