Category Archives: FOS

FOS+Inulin Like 250mg More Calcium in Adolescents

Abstract

Young adolescents who respond to an inulin-type fructan substantially increase total absorbed calcium and daily calcium accretion to the skeleton.

Calcium absorption and whole-body bone mineral content are greater in young adolescents who receive 8 g/d of Synergy, a mixture of inulin-type fructans (ITF), compared with those who received a maltodextrin control. Not all adolescents responded to this intervention, however. We evaluated 32 responders and 16 nonresponders to the calcium absorptive benefits of ITF. We found no differences in usual dietary calcium intakes. Responders who increased their calcium absorption by at least 3% after 8 wk of Synergy had a greater accretion of calcium to the skeleton over a year based on whole-body dual-energy x-ray absorptiometry data. The absorptive benefit to ITF use in responders is substantial and would be comparable to increasing daily calcium intake by at least 250 mg. Increased intake of ITF may be an important aspect of a multifaceted approach to enhancing peak bone mass.

Abrams SA, Griffin IJ, Hawthorne KM
J. Nutr. Nov 2007
PMID: 17951496 | Free Full Text

Review: FOS and Inulin and Calcium Absorption

Abstract

Current data with inulin-type fructans and calcium, targeting bone health in adults.

In humans, there is increasing evidence that the colon can absorb nutritionally significant amounts of calcium, and this process may be susceptible to dietary manipulation by fermentable substrates, especially inulin-type fructans. Inulin-type fructans can modulate calcium absorption because they are resistant to hydrolysis by mammalian enzymes and are fermented in the large intestine to produce short-chain fatty acids, which in turn reduce luminal pH and modify calcium speciation, and hence solubility, or exert a direct effect on the mucosal transport pathway. Quite a few intervention studies showed an improvement of calcium absorption in adolescents or young adults by inulin-type fructans. In the same way, a positive effect has been reported in older women.

Coxam V
J. Nutr. Nov 2007
PMID: 17951497 | Free Full Text

FOS Has No Bone Benefits in Chicks

Abstract

Effects of age, vitamin D3, and fructooligosaccharides on bone growth and skeletal integrity of broiler chicks.

A study was conducted to evaluate the effects of age, vitamin D(3), and fructooligosaccharides (FOS) on bone mineral density (BMD), bone mineral content (BMC), cortical thickness, cortical and trabecular area, and mechanical properties in broiler chicks using peripheral quantitative computed tomography and mechanical testing. A total of 54 male broiler chicks (1 d old) were placed in battery brooders and fed a corn-soybean starter diet for 7 d. After 7 d, the chicks were randomly assigned to pens of 3 birds each. Each treatment was replicated 3 times. There were 6 treatments: 1) early age control (control 1); 2) control 2; 3) 125 µg/kg of vitamin D(3); 4) 250 µg/kg of vitamin D(3); 5) 2% FOS); and 6) 4% FOS. The control 1 chicks were fed a control broiler diet and killed on d 14 to collect femurs for bone analyses. The remaining groups were killed on d 21. Femurs from 3-wk-old chicks showed greater midshaft cortical BMD, BMC, bone area, thickness, and marrow area than those from 2-wk-old chicks (P = 0.016, 0.0003, 0.0002, 0.01, and 0.0001, respectively). Total, cortical, and trabecular BMD of chick proximal femurs were not influenced by age. However, BMC and bone area were significantly affected by age. The femurs of 2-wk-old chicks exhibited significantly lower stiffness and ultimate load than those of 3-wk-old chicks (P = 0.0001), whereas ultimate stress and elastic modulus of the femurs of 2-wk-old chicks were significantly higher than that of femurs of 3-wk-old chicks (P = 0.0001). Chicks fed 250 µg/kg of vitamin D(3) exhibited significantly greater midshaft cortical BMC (P = 0.04), bone area (P = 0.04), and thickness (P = 0.03) than control 2, 2% FOS, or 4% FOS chicks. In summary, our study suggests that high levels of vitamin D(3) can increase bone growth and mineral deposition in broiler chicks. However, FOS did not have any beneficial effects on bone growth and skeletal integrity. Age is an important factor influencing skeletal integrity and mechanical properties in broiler chicks.

Kim WK, Bloomfield SA, Ricke SC
Poult. Sci. Nov 2011
PMID: 22010225 | Free Full Text

Isoflavones + FOS Synergy in Rats

Abstract

Synergistic effect of isoflavone glycosides and fructooligosaccharides on postgastrectomy osteopenia in rats.

Fructooligosaccharides stimulate the growth of Bifidobacteria, which cleave isoflavone glycosides to yield corresponding aglycones, and convert metabolites by enhancing enterohepatic recirculation of isoflavones in rats. In the present study, we determined the synergistic effect of dietary isoflavone glycosides and fructooligosaccharides on postgastrectomy osteopenia in rats. Nine-week-old male Sprague-Dawley rats were gastrectomized (n = 20) or sham operated, (control, n = 5) and then randomly assigned to 5 diet groups: sham-a purified diet control, gastrectomized-control, gastrectomized-isoflavone (0.2% isoflavone glycosides), gastrectomized-fructooligosaccharides (7.5% fructooligosaccharides), and isoflavone and fructooligosaccharides (0.2% isoflavone glycosides + 7.5% fructooligosaccharides). After 6 weeks, the rats were killed and biological samples were collected. In gastrectomized rats, fructooligosaccharides prevented femoral bone fragility, but isoflavone without fructooligosaccharides did not inhibit postgastrectomy osteopenia. Isoflavone and fructooligosaccharides exhibited a synergistic in the distal metaphyseal trabecular bone, indicated by peripheral quantitative computed tomography. Moreover, fructooligosaccharides increased calcium absorption and equol production from daidzein in gastrectomized rats. These results indicate that isoflavone alone did not inhibit postgastrectomy osteopenia, but the combination of isoflavone and fructooligosaccharides improved the inhibition of trabecular bone loss by increasing calcium absorption and equol production through fructooligosaccharides supplementation.

Kimira Y, Tajima K, Ohta A, Ishimi Y…
J Clin Biochem Nutr Sep 2012
PMID: 22962536 | Free Full Text

Prebiotics Up Magnesium and Calcium Absorption in Rats

Abstract

Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model.

Age-related changes in calcium metabolism play a role in the development of osteoporosis. A 4-wk feeding study was conducted in 5-mo-old ovariectomized (OVX) Sprague-Dawley rats to assess the effect of various dietary fibers on mineral metabolism and bone health parameters. There were 6 treatment groups: sham-Control, OVX-Control, OVX rats receiving daily estradiol (E₂) injections, and OVX rats receiving an AIN-93M diet supplement with either an inulin-based fiber (Synergy1® or Fruitafit HD®) or a novel fiber (polydextrose) at 5% wt. of diet. Calcium and magnesium metabolic balances were performed after early (3 d) and late exposure (4 wk) to dietary treatments. Rats receiving polydextrose had significantly higher net calcium absorption efficiency and retention than all control groups and a trend (P≤ 0.10) for higher calcium absorption when compared to inulin-based fibers after early exposure but the advantage did not persist over long-term exposure. The inulin-based fibers had positive chronic effects on calcium metabolism that were related to changes in the gut, that is, production of short chain fatty acids and higher cecal wall weights. All fibers improved magnesium absorption and retention in early and late metabolic balances; effects on magnesium metabolism were more pronounced than for calcium. PRACTICAL APPLICATION: Steady growth in US middle-aged and elderly populations has led to higher incidences of several chronic diseases including osteoporosis, a bone disease that primarily affects postmenopausal women. Recent research suggests that certain dietary fibers (prebiotics) enhance mineral absorption and may impart bone health benefits. This work examines the impact of prebiotic supplementation on mineral metabolism and bone health using a postmenopausal rat model. Study findings will aid future investigations in ascertaining the factors related to potential bone health benefits of prebiotic which will aid in developing an effective prebiotics food product/supplement that will address the bone health needs of consumers.

Legette LL, Lee W, Martin BR, Story JA…
J. Food Sci. Apr 2012
PMID: 22394255

Probiotics + FOS-Inulin Decreases Osteocalcin in Aged Rats

Abstract

Changes in calcium status in aged rats fed Lactobacillus GG and Bifidobacterium lactis and oligofructose-enriched inulin.

In this study we hypothesized that an increase in numbers of beneficial bacteria in the large intestine can affect calcium (Ca) status in the elderly. Adult and aged rats were fed a diet with or without synbiotics for 21 days. Synbiotics increased the numbers of lactobacilli and bifidobacteria in large intestine in both adult and aged rats. The plasma Ca concentration was significantly increased while osteocalcin concentration was significantly decreased only in aged rats fed synbiotics.

Naughton V, McSorley E, Naughton PJ
Appl Physiol Nutr Metab Feb 2011
PMID: 21326391

FOS + Genistin Increases Bone Density in Rats

Abstract

Combination of genistin and fructooligosaccharides prevents bone loss in ovarian hormone deficiency.

We have reported that soy isoflavones are capable of preventing loss of bone mineral density (BMD) in rats due to ovariectomy. The intestinal microflora is important in rendering soy isoflavones bioavailability by facilitating their conversion to equol. Hence, substances that can modulate the intestinal microflora could affect the bioavailability of isoflavones. The purpose of this study was to examine whether combination of genistin and fructooligosaccharides (FOS), a prebiotic, can enhance the effects of soy isoflavones on bone in ovariectomized (OVX) female rats. Forty-eight 90-day-old female Sprague-Dawley rats were either sham-operated (Sham; one group) or Ovx (three groups) and were placed on dietary treatment for 50 days. The Sham and one Ovx group received a control diet, and the remaining Ovx groups received genistin-rich isoflavones diet (Ovx+G) or genistin-rich isoflavones and FOS diet (Ovx+G+FOS). After 50 days, blood and bone specimens were collected for analysis. The genistin-rich isoflavones diet was able to significantly increase the whole-body, right femur, and fourth lumbar BMD by 1.6%, 1.48%, and 1.3%, respectively in comparison with the Ovx control. The combination of genistin-rich isoflavones diet and 5% FOS further increased whole-body, right femur, and fourth lumbar BMD more compared to the genistin-rich isoflavones diet. Our findings suggest that although a genistin-rich isoflavones diet can increase the BMD in rats with Ovx-induced bone loss, combination of genistin-rich isoflavones and FOS had greater effect in preventing bone loss in this rat model.

Hooshmand S, Juma S, Arjmandi BH
J Med Food Apr 2010
PMID: 20132047


According to Wikipedia, Genistin should be converted to Genistein when ingested.

Fermented Milk Reduces Bone Resorption

Abstract

Short-term effect of bedtime consumption of fermented milk supplemented with calcium, inulin-type fructans and caseinphosphopeptides on bone metabolism in healthy, postmenopausal women.

Milk products are good sources of calcium and their consumption may reduce bone resorption and thus contribute to prevent bone loss.
We tested the hypothesis that bedtime consumption of fermented milk supplemented with calcium inhibits the nocturnally enhanced bone resorption more markedly than fermented milk alone, and postulated that this effect was most pronounced when calcium absorption enhancers were added.
In a controlled, parallel, double-blind intervention study over 2 weeks we investigated the short-term effects of two fermented milks supplemented with calcium from milk minerals (f-milk + Ca, n = 28) or calcium from milk minerals, inulin-type fructans and caseinphosphopeptides (f-milk + Ca + ITF + CPP; n = 29) on calcium and bone metabolism in healthy, postmenopausal women, and compared them with the effect of a fermented control milk without supplements (f-milk, n = 28). At bedtime 175 ml/d of either test milk was consumed. Fasting blood samples and 48 h-urine were collected at baseline and at the end of the intervention. Urine was divided into a pooled daytime and nighttime fraction. Multifactorial ANOVA was performed.
Fermented milk independent of a supplement (n = 85) reduced the nocturnal excretion of deoxypyridinoline, a marker of bone resorption, from 11.73 +/- 0.54 before to 9.57 +/- 0.54 micromol/mol creatinine at the end of the intervention (P = 0.005). No effect was seen in the daytime fraction. Differences between the three milks (n = 28 resp. 29) were not significant. Fermented milk reduced bone alkaline phosphatase, a marker of bone formation, from 25.03 +/- 2.08 to 18.96 +/- 2.08 U/l, with no difference between these groups either. Fermented milk increased the nocturnal but not daytime urinary excretion of calcium and phosphorus. The effects on calcium and phosphorus excretion were mainly due to the group supplemented with Ca + ITF + CPP.
Bedtime consumption of fermented milk reduced the nocturnal bone resorption by decelerating its turnover. Supplemented calcium from milk mineral had no additional effect unless the absorption enhancers ITF + CPP were added. A stimulated intestinal calcium absorption may be assumed, since urinary calcium excretion increased at a constant bone resorption.

Adolphi B, Scholz-Ahrens KE, de Vrese M, Açil Y…
Eur J Nutr Feb 2009
PMID: 19030908

Review: Calcium, Vitamin D, K, Phytoestrogens

Abstract

Diet, nutrition, and bone health.

Osteoporosis is a debilitating disease that affects many older people. Fragility fractures are the hallmark of osteoporosis. Although nutrition is only 1 of many factors that influence bone mass and fragility fractures, there is an urgent need to develop and implement nutritional approaches and policies for the prevention and treatment of osteoporosis that could, with time, offer a foundation for population-based preventive strategies. However, to develop efficient and precocious strategies in the prevention of osteoporosis, it is important to determine which modifiable factors, especially nutritional factors, are able to improve bone health throughout life. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients as well as bioactive food ingredients. The evidence-base to support the role of nutrients and food components in bone health ranges from very firm to scant, depending on the nutrient/component. This article initially overviews osteoporosis, including its definition, etiology, and incidence, and then provides some information on possible dietary strategies for optimizing bone health and preventing osteoporosis. The potential benefits of calcium, vitamin D, vitamin K(1), phytoestrogens, and nondigestible oligosaccharides are briefly discussed, with particular emphasis on the evidence base for their benefits to bone. It also briefly considers some of the recent findings that highlight the importance of some dietary factors for bone health in childhood and adolescence.

Cashman KD
J. Nutr. Nov 2007
PMID: 17951494 | Free Full Text

Equol is Bone Sparing, Like Isoflavones in Rats

Abstract

Modulation of soy isoflavones bioavailability and subsequent effects on bone health in ovariectomized rats: the case for equol.

Soy products are of particular interest because of their potential health benefits in a range of hormonal conditions, such as osteoporosis, due to their high content in phytoestrogens. Because equol, the main metabolite from soy isoflavones, is thought to be powerful, the present study was designated to evaluate the bone-sparing effects of equol by either providing the molecule through the diet or by eliciting its endogenous production by modulating intestinal microflora by short-chain fructooligosaccharides (sc-FOS) or live microbial (Lactobacillus casei) together with daidzein, its precursor.
A comparison with daidzein and genistein was also performed. Rats (3 months old) were ovariectomised (OVX) or sham-operated (SH). Ovariectomised rats were randomly assigned to six experimental diets for 3 months: a control diet (OVX), the control diet supplemented with either genistein (G), or daidzein (D), or equol (E) at the level of 10 microg/g body weight/d. The remaining OVX rats were given daidzein at the dose of 10 mug/g body weight/d, simultaneously with short-chain FOS (Actilight, Beghin-Meiji) (D+FOS) or Lactobacillus casei (Actimel, Danone) (D+L). The SH rats were given the same control diet as OVX.
Genistein, daidzein or equol exhibited a bone sparing effect. Indeed, total femoral bone mineral density (BMD) was significantly enhanced (compared to that of OVX rats), as was the metaphyseal compartment. Bone strength was improved by E consumption, but not by genistein or daidzein given alone. As far as the FOS diet is concerned, the addition of prebiotics significantly raised efficiency of the daidzein protective effect on both femoral BMD and mechanical properties. The effects of lactobacillus were similar, except that the increase in metaphyseal-BMD was not significant.
In conclusion, long-term equol consumption, like genistein and daidzein, in the ovariectomized rat, provides bone sparing effects. Adding indigestible sugars, such as FOS or live microbial as L. casei, in the diet significantly improves daidzein protective effects on the skeleton.

Mathey J, Mardon J, Fokialakis N, Puel C…
Osteoporos Int May 2007
PMID: 17333448