Category Archives: Coconut Oil

Coconut oil Prevents Bone Loss in Ovariectomized Rats


Virgin coconut oil supplementation prevents bone loss in osteoporosis rat model.

Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model.

Hayatullina Z, Muhammad N, Mohamed N, Soelaiman IN
Evid Based Complement Alternat Med 2012
PMID: 23024690 | Free Full Text

High-Fat Diet of Flaxseed or Safflower Oils Improve Bone Strength in Rats; Coconut Oil No Benefit


Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats.

Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p < 0.001). Among all high-fat groups, there were no differences in femur BMD (p > 0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.

Lau BY, Fajardo VA, McMeekin L, Sacco SM…
Appl Physiol Nutr Metab Oct 2010
PMID: 20962915

Coconut Oil Reduces Oxidative Stress of Bone in Rats


The effects of virgin coconut oil on bone oxidative status in ovariectomised rat.

Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA) concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model.

Abujazia MA, Muhammad N, Shuid AN, Soelaiman IN
Evid Based Complement Alternat Med 2012
PMID: 22927879 | Free Full Text

This is significant for bone strength because:

Increased activity of reactive oxygen species (ROS) leads to overexpressions of TNF-α, RANKL, and M-CSF which enhance osteoclasts function and induce bone loss [7, 8]. Oxidative stress also suppresses bone formation by inhibiting osteoblast differentiation and decreasing the survival of these cells [9, 10].

Coconut Oil Increases Bone Strength in Rats


Effect of consumption of fatty acids, calcium, vitamin D and boron with regular physical activity on bone mechanical properties and corresponding metabolic hormones in rats.

The consumption of fatty acids, nutrients, and regular physical activity, individually influence bone mechanical properties in rats. To investigate their effects in combination, male rats were divided into the seven groups: G1: regular food and drinking water; G2: same as Gr.1 + physical activity (Whole body vibration; WBV); G3: same as Gr.2 + Calcium, Vit. D, Boron; G4: same as Gr.3 + canola oil; G5: same as Gr.3 + sunflower oil; G6: same as Gr.3 + mix of sunflower oil and canola oil; and G7: same as Gr.3 + coconut oil; and treated for 8 weeks. Analysis between the control with the groups 2 and 3 revealed that vibration in the G2 increased the body weight (P = 0.04), with no other major difference in plasma and bone indices. Comparison between the control with the G4-G7 (the oil groups) revealed that the rats in the G5 had a lower body weight (15 % less) and a significant increase in plasma levels of Estradiol in the G7 was noted. In addition, levels of Testosterone in the G4 and G7, and Free Testosterone in the G7 had a remarkable increase. Similar trend was observed for plasma levels of Vit. D in the G4 and G5. The stiffness and the breaking strength of the femur in the G7, and the breaking strength of the lumbar in the G7 compared to the control and the G4 and G5 was significantly higher and tended to increase in comparison to the G6. Better and stronger measurements observed for coconut oil is warranted to further study its effect on biomechanical properties of bones.

Naghii MR, Ebrahimpour Y, Darvishi P, Ghanizadeh G…
Indian J. Exp. Biol. Mar 2012
PMID: 22439438