Category Archives: Phloridzin

Phloretin Reduces Osteoclast Size by Inhibiting Aquaporin 9 In Vitro

Abstract

Involvement of aquaporin 9 in osteoclast differentiation.

Aquaporins (water channels) selectively enhance water permeability of membranes. Since osteoclast differentiation includes a dramatic increase in cell volume, we hypothesize that aquaporin(s) is/are critical for the formation of the multinucleated osteoclast from its mononuclear precursor. Our studies employ two cell models, bone marrow macrophages (BMMs) and the murine macrophage-like cell line, RAW264.7, as osteoclast precursors. Receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) and macrophage-colony-stimulating factor or RANKL alone were used to induce osteoclast differentiation in BMMs or RAW264.7 cells, respectively. We first used qualitative reverse transcription (RT)-PCR to examine which of the aquaporins are expressed in osteoclasts and in their precursor cells. Out of the 10 aquaporins examined, only aquaporin 9 (AQP9) was expressed in osteoclast-lineage cells. AQP9 has unique aqueous pore properties mediating the passage of a wide variety of non-charged solutes in addition to water. Western analyses using specific antibodies revealed a higher AQP9 level in RANKL-treated than in untreated cells. Quantitative real-time RT-PCR analyses also demonstrated higher AQP9 mRNA levels in RANKL-treated cells. Finally, we examined the effect of phloretin, an AQP9 inhibitor, on RANKL-induced osteoclast differentiation. Cells were incubated with RANKL for 5 days, and phloretin was added for the last 2 days, when most fusion occurs. A dramatic reduction in osteoclast size and in the number of nuclei per osteoclast was observed in cultures containing phloretin. The inhibitor did not have a significant effect on the number and size of mononuclear phagocytes in cultures not treated with RANKL. Our results suggest a role for AQP9 in osteoclast differentiation, specifically in the fusion process.

Aharon R, Bar-Shavit Z
J. Biol. Chem. Jul 2006
PMID: 16698796 | Free Full Text

Naringenin Derivative has Bone Anabolic Effects

Abstract

A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts.

Naringenin and its derivatives have been assessed in bone health for their oestrogen-‘like’ effects but low bioavailability impedes clinical potential. This study was aimed at finding a potent form of naringenin with osteogenic action.
Osteoblast cultures were harvested from mouse calvaria to study differentiation by naringenin, isosakuranetin, poncirin, phloretin and naringenin-6-C-glucoside (NCG). Balb/cByJ ovariectomized (OVx) mice without or with osteopenia were given naringenin, NCG, 17β-oestradiol (E2) or parathyroid hormone (PTH). Efficacy was evaluated by bone microarchitecture using microcomputed tomography and determination of new bone formation by fluorescent labelling of bone. Plasma levels of NCG and naringenin were determined by HPLC.
NCG stimulated osteoblast differentiation more potently than naringenin, while isosakuranetin, poncirin or phloretin had no effect. NCG had better oral bioavailability than naringenin. NCG increased the mRNA levels of oestrogen receptors (ERs) and bone morphogenetic protein (an ER responsive gene) in vivo, more than naringenin. In OVx mice, NCG treatment in a preventive protocol increased bone formation rate (BFR) and improved trabecular microarchitecture more than naringenin or E2. In osteopenic mice, NCG but not naringenin, in a therapeutic protocol, increased BFR and improved trabecular microarchitecture, comparable with effects of PTH treatment. Stimulatory effects of NCG on osteoblasts were abolished by an ER antagonist. NCG transactivated ERβ but not ERα. NCG exhibited no uterine oestrogenicity unlike naringenin.
NCG is a potent derivative of naringenin that has bone anabolic action through the activation of osteoblast ERs and exhibited substantial oral bioavailability.

Swarnkar G, Sharan K, Siddiqui JA, Mishra JS…
Br. J. Pharmacol. Mar 2012
PMID: 21864313 | Free Full Text

Phloretin Inhibits Osteoclasts In Vitro

Abstract

Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages.

Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity.
Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin.
These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis.

Kim JL, Kang MK, Gong JH, Park SH…
Mol Nutr Food Res Aug 2012
PMID: 22700286

Phloridzin Prevents Bone Loss in Ovariectomized Rats

Abstract

Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions.

Aging and sex hormones related changes lead to inflammatory and oxidant conditions, which are involved in the pathogenesis of osteoporosis. Recent studies have suggested that polyphenols may exert a protective effect in such conditions. We assessed the effect of phloridzin (Phlo), a flavonoid exclusively found in apple, on bone metabolism in ovariectomized (OVX) or sham-operated (SH) rats with and without inflammation. Six-month-old Wistar rats were allocated to two equal groups that received either a control diet or a diet supplemented with 0.25% Phlo for 80 days. Three weeks before necropsy, inflammation was induced by subcutaneous injection of talc in 10 animals of each group. At necropsy, ovariectomy decreased both total (T-BMD) and metaphyseal (M-BMD) femoral bone mineral density (P < 0.01). Inflammation conditions, checked by an increase in the spleen weight and alpha1-acid glycoprotein concentration in OVX rats, exacerbated the decrease in T-BMD (g/cm2) (as well as M-BMD) observed in castrated animals (P < 0.05). Daily Phlo intake prevented ovariectomy-induced bone loss in conditions of inflammation as shown by T-BMD and M-BMD (P < 0.05). At the diaphyseal site, BMD was improved by Phlo in OVX rats with or without inflammation (P < 0.05). These results could be explained by changes in bone remodeling as the increased urinary deoxypyridinoline excretion in OVX and OVXinf animals was prevented by the polyphenol-rich diet (P < 0.001), while plasma osteocalcin concentration was similar in all experimental groups. In conclusion, Phlo consumption may provide protection against ovariectomy-induced osteopenia under inflammation conditions by improving inflammation markers and bone resorption.

Puel C, Quintin A, Mathey J, Obled C…
Calcif. Tissue Int. Nov 2005
PMID: 16307390

Review: Fruits and Phytochemicals

Abstract

Fruits and dietary phytochemicals in bone protection.

Osteoporosis is a disease of bone characterized by loss of bone matrix and deterioration of bone microstructure that leads to an increased risk of fracture. Cross-sectional studies have shown a positive association between higher fruit intake and higher bone mineral density. In this review, we evaluated animal and cellular studies of dried plum and citrus and berry fruits and bioactive compounds including lycopene, phenolics, favonoids, resveratrol, phloridzin, and pectin derived from tomato, grapes, apples, and citrus fruits. In addition, human studies of dried plum and lycopene were reviewed. Animal studies strongly suggest that commonly consumed antioxidant-rich fruits have a pronounced effect on bone, as shown by higher bone mass, trabecular bone volume, number, and thickness, and lower trabecular separation through enhancing bone formation and suppressing bone resorption, resulting in greater bone strength. Such osteoprotective effects seem to be mediated via antioxidant or anti-inflammatory pathways and their downstream signaling mechanisms, leading to osteoblast mineralization and osteoclast inactivation. In future studies, randomized controlled trials are warranted to extend the bone-protective activity of fruits and their bioactive compounds. Mechanistic studies are needed to differentiate the roles of phytochemicals and other constitutes in bone protection offered by the fruits. Advanced imaging technology will determine the effective doses of phytochemicals and their metabolites in improving bone mass, microarchitecture integrity, and bone strength, which is a critical step in translating the benefits of fruit consumption on osteoporosis into clinical data.

Shen CL, von Bergen V, Chyu MC, Jenkins MR…
Nutr Res Dec 2012
PMID: 23244535