Category Archives: GOS

Oligogalacturonic Acid Inhibits Resorption In Vitro

Abstract

Oligogalacturonic acid inhibit bone resorption and collagen degradation through its interaction with type I collagen.

In this study, we showed that oligogalacturonic acid (OGA) purified from flax pectin inhibit in vitro osteoclastic bone resorption in a dose-dependent manner. The OGA inhibitory effect was neither linked to an effect on osteoclast apoptosis, nor to an inhibition of cathepsin K activity. By means of an in vitro collagen degradation assay we demonstrated that OGA prevented triple-helical type I collagen cleavage by cathepsin K in a dose and chain length dependent manner. This inhibition was not restricted to cathepsin K, since collagenolytic activity of other lysosomal cysteine proteases, such as cathepsin B and cathepsin L, as well as matrixmetalloproteinases such as MMP-9 were also inhibited. Interestingly, using non-collagen substrates we demonstrated that OGA does not inhibit the proteolytic activity of cathepsin B and L, suggesting that OGA inhibits collagen degradation without affecting the lysosomal cysteine enzyme proteolytic activity. Finally, preliminary study using surface plasmon resonance (SPR) showed that OGA binds to type I collagen but not to albumin, consistent with a specific effect on collagen. These results suggest that the observed inhibition of collagen degradation by OGA may be due to its ability to bind to the collagen molecule. By masking the collagen surface, OGA may render the collagen cleavage site less accessible to enzymes and thus prevent its enzymatic degradation.

Lion JM, Mentaverri R, Rossard S, Jullian N…
Biochem. Pharmacol. Dec 2009
PMID: 19647720

GOS Increases Calcium Absorption in Rats

Abstract

Dietary galactooligosaccharides increase calcium absorption in normal and gastrectomized rats.

To determine whether the galactooligosaccharide stimulates calcium absorption in partially gastrectomized rats.
Animals were submitted to laparotomy (sham-operated control) and partial gastrectomy (Billroth II) in groups of 20. They were fed a control diet (AIN-93M) without galacto-oligosaccharide or a diet containing (galacto-oligosaccharide – 50 g/kg diet) for eight weeks. The animals were divided into four groups: sham-operated and non-gastrectomized with galactooligosaccharide, sham-operated and gastrectomized without galactooligosaccharide. On the final day of the study, whole blood was collected for determination of serum calcium concentration.
In the group with galactooligosaccharides calcium excretion in feces was significantly lower than the group without prebiotics. The apparent absorption of calcium in gastrectomized and normal rats was higher in groups fed with galactooligosaccharide than in the control diet group.
The ingestion of galactooligosaccharides prevents osteopenia in partially gastrectomized rats.

dos Santos EF, Tsuboi KH, Araújo MR, Andreollo NA…
Rev Col Bras Cir
PMID: 21789458 | Free Full Text

GOS Ups Mineral Absorption and Bone Properties in Rats

Abstract

Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation.

Galactooligosaccharides (GOS), prebiotic nondigestible oligosaccharides derived from lactose, have the potential for improving mineral balance and bone properties. This study examined the dose-response effect of GOS supplementation on calcium and magnesium absorption, mineral retention, bone properties, and gut microbiota in growing rats. Seventy-five 4-week-old male Sprague-Dawley rats were randomized into one of five treatment groups (n = 15/group) and fed a diet containing 0, 2, 4, 6, or 8% GOS by weight for 8 weeks. Dietary GOS significantly decreased cecal pH and increased cecal wall weight and content weight in a dose-dependent manner (p < 0.0001). Fingerprint patterns of the 16S rRNA gene PCR-DGGE from fecal DNA indicated the variance of bacterial community structure, which was primarily explained by GOS treatments (p = 0.0001). Quantitative PCR of the samples revealed an increase in the relative proportion of bifidobacteria with GOS (p = 0.0001). Net calcium absorption was increased in a dose-response manner (p < 0.01) with GOS supplementation. Dietary GOS also increased (p < 0.02) net magnesium absorption, femur ⁴⁵Ca uptake, calcium and magnesium retention, and femur and tibia breaking strength. Distal femur total and trabecular volumetric bone mineral density (vBMD) and area and proximal tibia vBMD increased (p < 0.02) with GOS supplementation. Trabecular-rich bones, that is, those that rapidly turn over, were most benefited. Regression modeling showed that GOS benefited calcium and magnesium utilization and vBMD through decreased cecal pH, increased cecal wall and content weight, and increased proportion of bifidobacteria.

Weaver CM, Martin BR, Nakatsu CH, Armstrong AP…
J. Agric. Food Chem. Jun 2011
PMID: 21553845

Review: FOS and Inulin, Minerals and Bones

Abstract

Inulin, oligofructose and mineral metabolism – experimental data and mechanism.

Numerous investigations performed in animal models in the past 10 years have shown repeatedly that non-digestible oligosaccharides (NDO), such as inulin, oligofructose or transgalacto-oligosaccharides (TOS), stimulate mineral absorption, mainly calcium and magnesium. Long-term beneficial effects on bone health have been indicated by accumulation of bone mineral content in growing rats or prevention of bone loss in ovariectomized rats. However, bone mineral content or density are not necessarily associated with bone quality. In recent studies both oligofructose and calcium prevented loss of trabecular bone area induced by oestrogen deficiency, this, however, occurred at different trabecular shapes. The effects of NDO on mineral metabolism may be based on the enhancement of passive and active mineral transport across the intestinal epithelium, mediated by an increase in certain metabolites of the intestinal flora and a reduction of pH. The possible impact of short-chain fatty acids, butyrate in particular, and of polyamines on the stimulation of mineral absorption capacity, and the interaction of oligofructose and antibiotics is discussed.

Scholz-Ahrens KE, Schrezenmeir J
Br. J. Nutr. May 2002
PMID: 12088516

GOS Increases Calcium and Prevents Bone Loss in Rats

Abstract

Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats.

The effects of galactooligosaccharides (GOS), a mixture of galactosyl oligosaccharides formed from lactose by the transgalactosyl reaction of beta-D-galactosidase derived from Bacillus circulans, on calcium absorption and prevention of bone loss were examined in ovariectomized (OVX) Wistar rats. Rats fed on a diet containing GOS absorbed calcium more efficiently than those on the control diet after 8-10 days and 18-20 days, and the bone (femur and tibia) ash weight and tibia calcium content of OVX rats fed on the GOS diet were significantly higher than those of the control animals. Although the serum total cholesterol of the ovariectomized rats was significantly elevated, GOS produced a significant hypocholesterolemic effect in the OVX rats. GOS, which is fermented by bacteria in the lower part of the intestine, enhanced volatile fatty acid production, and thus prevented bone loss and lower serum total cholesterol concentration in the ovariectomized rats.

Chonan O, Matsumoto K, Watanuki M
Biosci. Biotechnol. Biochem. Feb 1995
PMID: 7766023 | Free Full Text