Category Archives: Vitamin C

Calcium Threonate may Influence Bone Mineralization Through its Action on Vitamin C

Abstract

Pharmacokinetics and safety of calcium L-threonate in healthy volunteers after single and multiple oral administrations.

To evaluate the pharmacokinetics of L-threonate after single or multiple oral administrations and its safety profile in healthy Chinese volunteers. This was an open-label, single- and multiple-dose study. The subjects were assigned to receive a single dose, 675, 2025, or 4050 mg, of calcium L-threonate (n=12) or repeated doses of 2025 mg twice daily for 4 d (n=12). Serial plasma and urine samples were analyzed with HPLC-MS/MS. Pharmacokinetic parameters of L-threonate were calculated using non-compartmental analysis with WinNonlin software.
In the single dose group, C(max) reached at 2.0 h and the mean t(1/2) was approximately 2.5 h. Area under curve (AUC) and C(max) increased with dose escalation, but dose proportionality was not observed over the range of 675 to 4050 mg. AUC and C(max) in the fasted subjects were lower compared with those in the non-fasted subjects. Cumulative urinary excretion of L-threonate over 24 h represented 5.9% of the administered dose with a mean Cl/r of 0.8 L/h. In the multiple-dose study, no accumulation appeared upon repeated doses of 2025 mg twice daily for 4 d. There were no serious adverse events that occurred during this study.
Calcium L-threonate was well tolerated in healthy Chinese subjects, with no pattern of dose-related adverse events. Plasma exposure increased with dose escalation, but linear pharmacokinetics were not observed over the studied doses. L-threonate was absorbed rapidly, and its absorption was enhanced by food intake. No systemic accumulation appeared after repeated administrations.

Wang HY, Hu P, Jiang J
Acta Pharmacol. Sin. Dec 2011
PMID: 21986570 | Free Full Text


The introduction is the most interesting part of the article.

L-Threonic acid is an active metabolite of vitamin C5, 6, 7, 8. It has been reported that L-threonic acid exhibits significant stimulatory action on vitamin C uptake and prolongs the retention of vitamin C in human T-lymphoma cells9, 10. It is also well known that vitamin C is a marker for osteoblast formation and has been shown to stimulate procollagen and enhance collagen synthesis11, 12, 13, 14. Therefore, L-threonic acid may play a role in the mineralization process through its positive action on vitamin C. This hypothesis was confirmed in 1999 by Rowe DJ15. It was reported that in vitro treatment with ascorbate-containing vitamin C metabolites enhanced the formation of the mineralized nodules and collagenous proteins and that L-threonate was one of the metabolites that was found to influence the mineralization process15. Recently, a preclinical study was performed to investigate the effect of L-threonate on bone resorption of rabbit osteoclasts16. This study contained a total of six culture groups, including one control group and five groups treated with drugs (calcium L-threonate, sodium L-threonate, alendronate, 17β-estradiol and calcium gluconate). The levels of type I collagen C-telopeptide (CTx) and bone slice resorptive area were measured. This study found that L-threonate, especially calcium L-threonate, inhibited the bone resorption of osteoclasts in vitro; however, the reductive effects on the CTx level and resorptive area were not as significant as alendronate and 17β-estradiol at the same concentration.

Calcium L-threonate ((2R,3S)-2,3,4-trihydroxy butyric acid calcium) (Figure 1) is a novel drug developed for the treatment of osteoporosis and as a calcium supplement. Phase I clinical trials of calcium L-threonate, including tolerance, pharmacokinetics and calcium absorption evaluation, were performed in Peking Union Medical College Hospital. In this paper, the pharmacokinetics of L-threonate after single or multiple oral administrations and its safety profile in healthy Chinese volunteers are presented.

Review: Nutrition for Osteoporosis

Abstract

Osteoporosis prevention and nutrition.

Although calcium and vitamin D have been the primary focus of nutritional prevention of osteoporosis, recent research has clarified the importance of several additional nutrients and food constituents. Further, results of calcium and vitamin D supplementation trials have been inconsistent, suggesting that reliance on this intervention may be inadequate. In addition to dairy, fruit and vegetable intake has emerged as an important modifiable protective factor for bone health. Several nutrients, including magnesium, potassium, vitamin C, vitamin K, several B vitamins, and carotenoids, have been shown to be more important than previously realized. Rather than having a negative effect on bone, protein intake appears to benefit bone status, particularly in older adults. Regular intake of cola beverages shows negative effects and moderate alcohol intake shows positive effects on bone, particularly in older women. Current research on diet and bone status supports encouragement of balanced diets with plenty of fruit and vegetables, adequate dairy and other protein foods, and limitation of foods with low nutrient density.

Tucker KL
Curr Osteoporos Rep Dec 2009
PMID: 19968914

Calcium Threonate in Ester-C Enhances Vitamin C’s Bone Mineralization In Vitro

Abstract

Enhanced production of mineralized nodules and collagenous proteins in vitro by calcium ascorbate supplemented with vitamin C metabolites.

Vitamin C or ascorbate is important in wound healing due to its essential role in collagen synthesis. To study wound healing in the periodontium, cells adherent to expanded polytetrafluoroethylene (ePTFE) augmentation membranes, recovered from edentulous ridge augmentation procedures, have been established in culture in our laboratories. The objective of this study was to determine whether treatment of these cells with a calcium ascorbate, which contains vitamin C metabolites (metabolite-supplemented ascorbate), would increase the production of collagenous protein and mineralized tissue in vitro, as compared to unsupplemented calcium ascorbate (ascorbate).
Cells derived from ePTFE membranes were cultured with beta-glycerophosphate and the test agents for 2 to 5 weeks, and the surface areas of the cell cultures occupied by mineralized nodules were measured using computerized image analysis. One experiment tested the effects of calcium threonate, one of the vitamin C metabolites in metabolite-supplemented ascorbate. Incorporation of radioactive proline and glycine was used as a measure of total protein (radioactivity precipitated by trichloracetic acid) and collagenase-digestible protein (radioactivity released by collagenase digestion.) Co-localization of collagen and fibronectin was examined by immunofluorescence.
In vitro treatment of these cells with metabolite-supplemented ascorbate increased the area of the cell cultures occupied by mineralized nodules after 5 weeks. Cell cultures treated with metabolite-supplemented ascorbate also exhibited significant increases in total protein. The increase in collagenous proteins in these cultures accounted for 85% of the increase in total protein. The greatest difference between treatment groups was observed in the cell-associated fraction containing the extracellular matrix. The additional collagen exhibited normal co-distribution with fibronectin. In cultures treated with ascorbate spiked with calcium threonate, the area of mineralized tissue was significantly greater than in ascorbate-treated cultures, but was less than that observed in cultures treated with metabolite-supplemented ascorbate.
In vitro treatment with ascorbate containing vitamin C metabolites enhanced the formation of mineralized nodules and collagenous proteins. Calcium threonate may be one of the metabolites influencing the mineralization process. Identifying factors which facilitate the formation of mineralized tissue has significant clinical ramifications in terms of wound healing and bone regeneration.

Rowe DJ, Ko S, Tom XM, Silverstein SJ…
J. Periodontol. Sep 1999
PMID: 10505801


This study is on Ester-C. Ester-C, PureWay-C, and AlphaSorb-C are Vitamin C products that contain Calcium-L-Threonate. Biocalth is Calcium product which is all Calcium-L-Threonate without Vitamin C.

 

Review: Nutrients Involved in Maintaining Healthy Bone

Abstract

Update on nutrients involved in maintaining healthy bone.

Osteoporosis is a leading cause of morbidity and mortality in the elderly and influences quality of life, as well as life expectancy. Currently, there is a growing interest among the medical scientists in search of specific nutrients and/or bioactive compounds of natural origin for the prevention of disease and maintenance of bone health. Although calcium and vitamin D have been the primary focus of nutritional prevention of osteoporosis, a recent research has clarified the importance of several additional nutrients and food constituents. Based on this review of the literature, supplementation with vitamins B, C, K, and silicon could be recommended for proper maintenance of bone health, although further clinical studies are needed. The results of studies on long-chain polyunsaturated fatty acids, potassium, magnesium, copper, selenium, and strontium are not conclusive, although studies in vitro and in animal models are interesting and promising.

Rondanelli M, Opizzi A, Perna S, Faliva MA
Endocrinol Nutr Apr 2013
PMID: 23273614

Review: Calcium, Vitamin D, K, B, C Essential for Bone Quality

Abstract

[Diabetes mellitus and osteoporosis. Dietary therapy of diabetes related osteoporosis].

Diabetic patients are prone to fracture, even when their bone mineral density (BMD) is high, suggesting that BMD is not exclusive factor for bone health. Bone strength is determined by BMD and bone quality, the latter of which could influence fracture risk in diabetic patients. Calcium, vitamin D and vitamin K are essential for increasing and/or maintaining BMD. Vitamin B group and C, which contribute to maintain bone quality, are also important. Intake of these mineral and vitamins under controlling energy consumption plays a key role for bone health.

Uenishi K
Clin Calcium Sep 2012
PMID: 22932295

Review: Protein, Calcium, Vitamins D, C, K, and Fruits and Veggies in Osteoporosis

Abstract

The role of diet in osteoporosis prevention and management.

Diet, a modifiable osteoporosis risk factor, plays an important role in the acquisition and maintenance of bone mass. The influence of diet on bone begins in childhood; even maternal diet can influence bone mass in the offspring. A good general nutritional status and adequate dietary protein, calcium, vitamin D, fruits, and vegetables have a positive influence on bone health, while a high caloric diet and heavy alcohol consumption have been associated with lower bone mass and higher rates of fracture. The evidence for a role of other minerals and vitamins in skeletal health is not as strong, but recent evidence suggests that vitamins C and K might also have an effect on bone.

Levis S, Lagari VS
Curr Osteoporos Rep Dec 2012
PMID: 23001895

Vitamin C is a Skeletal Anabolic Agent in Mice

Abstract

Vitamin C prevents hypogonadal bone loss.

Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, we show that the ingestion of vitamin C prevents the low-turnover bone loss following ovariectomy in mice. We show that this prevention in areal bone mineral density and micro-CT parameters results from the stimulation of bone formation, demonstrable in vivo by histomorphometry, bone marker measurements, and quantitative PCR. Notably, the reductions in the bone formation rate, plasma osteocalcin levels, and ex vivo osteoblast gene expression 8 weeks post-ovariectomy are all returned to levels of sham-operated controls. The study establishes vitamin C as a skeletal anabolic agent.

Zhu LL, Cao J, Sun M, Yuen T…
PLoS ONE 2012
PMID: 23056580 | Free Full Text

Vitamin C Supplements Associated With Bone Density in Postmenopausal Women

Abstract

Vitamin C supplement use and bone mineral density in postmenopausal women.

Vitamin C is known to stimulate procollagen, enhance collagen synthesis, and stimulate alkaline phosphatase activity, a marker for osteoblast formation. Studies of dietary vitamin C intake and the relation with bone mineral density (BMD) have been conflicting, probably because of the well-known limitations of dietary nutrient assessment questionnaires. The purpose of this study was to evaluate the independent relation of daily vitamin C supplement use with BMD in a population-based sample of postmenopausal women. Subjects were 994 women from a community-based cohort of whom 277 women were regular vitamin C supplement users. Vitamin C supplement use was validated. Daily vitamin C supplement intake ranged from 100 to 5,000 mg; the mean daily dose was 745 mg. Average duration of use was 12.4 years; 85% had taken vitamin C supplements for more than 3 years. BMD levels were measured at the ultradistal and midshaft radii, hip, and lumbar spine. After adjusting for age, body mass index (BMI), and total calcium intake, vitamin C users had BMD levels approximately 3% higher at the midshaft radius, femoral neck, and total hip (p < 0.05). In a fully adjusted model, significant differences remained at the femoral neck (p < 0.02) and marginal significance was observed at the total hip (p < 0.06). Women taking both estrogen and vitamin C had significantly higher BMD levels at all sites. Among current estrogen users, those also taking vitamin C had higher BMD levels at all sites, with marginal significance achieved at the ultradistal radius (p < 0.07), femoral neck (p < 0.07), and total hip (p < 0.09). Women who took vitamin C plus calcium and estrogen had the highest BMD at the femoral neck (p = 0.001), total hip (p = 0.05), ultradistal radius (p = 0.02), and lumbar spine. Vitamin C supplement use appears to have a beneficial effect on levels of BMD, especially among postmenopausal women using concurrent estrogen therapy and calcium supplements.

Morton DJ, Barrett-Connor EL, Schneider DL
J. Bone Miner. Res. Jan 2001
PMID: 11149477

Antioxidants No Benefit in Population Study, Except Vitamin C with HRT

Abstract

Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative.

Antioxidant defenses are one possible mechanism for decreasing oxidative damage and its potentially negative effects on age-related bone mass.
This study cross-sectionally examined whether higher dietary intakes, total intakes, and serum concentrations of antioxidants may be associated with higher bone mineral density (BMD).
Total hip (and subregions), spine, and total-body BMDs were measured in 11,068 women aged 50-79 y enrolled in the Women’s Health Initiative Observational Study and Clinical Trial at 3 clinics. Antioxidant intakes from diet (vitamin A, retinol, beta-carotene, vitamin C, vitamin E, and selenium) were estimated by using a self-reported food-frequency questionnaire. Antioxidants from supplements were estimated with an interviewer-administered questionnaire. A random subset (n = 379) had serum concentrations of retinol, carotenoids, and tocopherols measured.
After adjustment for important BMD-related covariates, increasing intakes of antioxidants were not independently associated with BMD. A significant interaction effect was observed between intake of total vitamin C (lower three-fourths compared with highest one-fourth) and use of hormone therapy (HT) (P < 0.01). The beneficial effect of current HT use on femoral neck BMD appeared to be greater in women with higher concentrations of total vitamin C. This interaction was also significant for total-body (P < 0.045), spine (P = 0.03), and total-hip BMDs (P = 0.029).
Our results do not support independent associations between dietary intake, total intake, or serum concentrations of antioxidants and BMD in women participating in the Women’s Health Initiative. The extent to which HT use may interact with vitamin C intake and BMD warrants further exploration.

Wolf RL, Cauley JA, Pettinger M, Jackson R…
Am. J. Clin. Nutr. Sep 2005
PMID: 16155271 | Free Full Text

Vitamin C Effects Not Clear in Population Study

Abstract

Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults.

Ascorbic acid is an essential nutrient involved in collagen formation, and its deficiency is associated with abnormal bone development. To examine the relation of ascorbic acid to bone mineral density and the prevalence of self-reported fractures, the authors analyzed data collected from 13,080 adults enrolled in the Third National Health and Nutrition Examination Survey (NHANES III) during 1988-1994. Because they identified three-way interactions among smoking, history of estrogen use, and dietary and serum ascorbic acid in postmenopausal women, they analyzed these relations stratified by smoking and estrogen use. Dietary ascorbic acid intake was independently associated with bone mineral density among premenopausal women (p = 0.002). Among men, serum ascorbic acid was associated in a nonlinear fashion with bone mineral density (p < 0.05), and dietary ascorbic acid intake was associated in a nonlinear fashion with self-reported fracture (p = 0.05). Among postmenopausal women without a history of smoking or estrogen use, serum ascorbic acid was unexpectedly associated with lower bone mineral density (p = 0.01). However, among postmenopausal women with a history of smoking and estrogen use, a standard deviation increase in serum ascorbic acid was associated with a 49% decrease in fracture prevalence (p = 0.001). Dietary and serum ascorbic acid measures were associated inconsistently with bone mineral density and self-reported fracture among adult participants in NHANES III.

Simon JA, Hudes ES
Am. J. Epidemiol. Sep 2001
PMID: 11532784 | Free Full Text