Category Archives: Alcohol

Low to Moderate Alcohol May Protect Bone

Abstract

Alcohol consumption and bone mineral density in elderly women.

Findings regarding alcohol consumption and bone mineral density (BMD) in elderly women have been inconsistent. The objective of the present study was to explore the association of alcohol intake with BMD in elderly women.
This cohort study included women from the population-based Kuopio Osteoporosis Risk Factor and Prevention – Fracture Prevention Study (OSTPRE-FPS). Alcohol intake and potential confounders were assessed at baseline and after 3 years of follow-up using a lifestyle questionnaire. In addition, an FFQ was distributed in the third year to measure dietary intake, including alcohol. Women underwent BMD measurements at the femoral neck and lumbar spine at baseline and after 3 years of follow-up.
Kuopio Province, Finland.
Three hundred elderly women (mean age 67·8 years) who provided both BMD measurements and FFQ data.
Alcohol consumption estimated from the FFQ and lifestyle questionnaire was significantly associated with BMD at both measurement sites after adjustment for potential confounders, including lifestyle and dietary factors (P < 0·05). Using the FFQ, women drinking >3 alcoholic drinks/week had significantly higher BMD than abstainers, 12·0 % at the femoral neck and 9·2 % at the lumbar spine. Results based on the lifestyle questionnaire showed higher BMD values for all alcohol-consuming women at the femoral neck and for women drinking 1-3 alcoholic beverages/week at the lumbar spine, compared with non-users.
The results from OSTPRE-FPS suggest that low to moderate alcohol intake may exert protective effects on bone health in elderly women.

Sommer I, Erkkilä AT, Järvinen R, Mursu J…
Public Health Nutr Apr 2013
PMID: 22800300

Review: Moderate Alcohol May Benefit Bone, but Abuse has Toxic Effect

Abstract

Bone and the ‘comforts of life’.

Coffee drinking, smoking and especially alcohol abuse are considered to be risk factors for fractures and osteoporosis. Caffeine causes acute increase in urinary calcium excretion, but epidemiological evidence for the effects of coffee consumption on the risk of fractures is contradictory. Many, (but not all) studies point to decreased bone mass or increased fracture risk in smokers. Alcohol abuse is associated with deleterious changes in bone structure detected by histomorphometry, and with a decrease in bone mineral density (BMD).

 These changes may also be produced by factors commonly associated with alcohol abuse, e.g. nutritional deficiencies, liver damage and hypogonadism. Alcohol, however, has clear-cut direct effects on bone and mineral metabolism. Acute alcohol intoxication causes transitory hypoparathyroidism with resultant hypocalcaemia and hypercalciuria. As assessed by serum osteocalcin levels, prolonged moderate drinking decreases the function of osteoblasts, the bone-forming cells. In addition, chronic alcoholics are characterized by low serum levels of vitamin D metabolites. Thus, alcohol seems to have a direct toxic effect on bone and mineral metabolism. In contrast, it has recently been reported that moderate alcohol consumption by postmenopausal women may have a beneficial effect on bone.

Laitinen K, Välimäki M
Ann. Med. Aug 1993
PMID: 8217108

Review: Nutrition for Osteoporosis

Abstract

Osteoporosis prevention and nutrition.

Although calcium and vitamin D have been the primary focus of nutritional prevention of osteoporosis, recent research has clarified the importance of several additional nutrients and food constituents. Further, results of calcium and vitamin D supplementation trials have been inconsistent, suggesting that reliance on this intervention may be inadequate. In addition to dairy, fruit and vegetable intake has emerged as an important modifiable protective factor for bone health. Several nutrients, including magnesium, potassium, vitamin C, vitamin K, several B vitamins, and carotenoids, have been shown to be more important than previously realized. Rather than having a negative effect on bone, protein intake appears to benefit bone status, particularly in older adults. Regular intake of cola beverages shows negative effects and moderate alcohol intake shows positive effects on bone, particularly in older women. Current research on diet and bone status supports encouragement of balanced diets with plenty of fruit and vegetables, adequate dairy and other protein foods, and limitation of foods with low nutrient density.

Tucker KL
Curr Osteoporos Rep Dec 2009
PMID: 19968914

Moderate Alcohol is Good; Caffeine with Low Calcium is Bad

Abstract

To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women?

To determine relationship between alcohol, caffeine, past smoking and bone mineral density of different skeletal sites in elderly women, accounting for other biological and life-style variables.
A cross-sectional study in 136 Caucasian women, mean +/- SD age 68.6 +/- 7.1 years, all healthy and free of medications affecting bones, including estrogen. Bone mineral density (BMD) of multiple skeletal regions and body composition were measured by dual X-ray absorptiometry. Serum vitamin D (25-OHD) and parathyroid hormone (PTH) were analyzed and used as confounders. Calcium (Ca) intake was assessed by food frequency questionnaire. Alcohol and caffeine consumption was assessed by questionnaires determining frequency, amount and source of each. There were no current smokers, but the history of smoking was recorded, including number of years and packages smoked/day. Past physical activity was assessed by Allied Dunbar National Fitness Survey and used as confounder. Statistical significance was considered at p <or= 0.05.
In the correlational analysis, alcohol was positively associated with spine BMD (r = 0.197, p = 0.02), 25-OHD and negatively with PTH. Smoking was negatively related to Ca intake, 25(OH)D and number of reproductive years. In subgroup (stratified by Ca intake) and multiple regression analyses, alcohol (average approximately 0.5-1 drinks/day or approximately 8 g alcohol/day) was favorably associated with BMD of spine and total body. Caffeine (average approximately 2.5 6-fl oz cups/day or 200-300 mg caffeine/day) had negative association with most of the skeletal sites, which was attenuated with higher Ca intake (>or=median, 750 mg/day). The past smokers who smoked on average 24 years of approximately 1 pack cigarettes/day had lower BMD in total body, spine and femur than never-smokers when evaluated in subgroup analyses, and the association was attenuated in participants with >or=median Ca intake. There was no significant association between past smoking and BMD of any skeletal site in multiple regression analyses.
The results support the notion that consumption of small/moderate amount of alcohol is positively, while caffeine and past smoking are negatively associated with most of the skeletal sites, which might be attenuated with Ca intake above 750 mg/day.

Ilich JZ, Brownbill RA, Tamborini L, Crncevic-Orlic Z
J Am Coll Nutr Dec 2002
PMID: 12480799


It is interesting how many things are bad when calcium is low. There is some evidence that high protein, caffeine, and sodium are all bad for bones only when calcium is low. Otherwise, they all may be moderately good for bones when calcium is high.

 

Exercise Limits Effects of Excessive Alcohol on Bone in Rats

Abstract

Regular exercise limits alcohol effects on trabecular, cortical thickness and porosity, and osteocyte apoptosis in the rat.

Excessive alcohol consumption is known to be a cause of secondary osteoporosis whereas physical activity is recommended in prevention of osteoporosis. This study was designed to analyze the effects of physical exercise on bone parameters in chronic alcohol-fed rats.
Forty-eight male Wistar rats were divided in four groups: Control (C), Alcohol (A), Exercise (E) and Alcohol+Exercise (AE). A and AE groups drank a solution composed of ethanol and water (35% volume/volume for 17 weeks). E and AE groups were submitted to treadmill training for 14 weeks (60 min/day, 5 times/week). Bone mineral density (BMD) was assessed by DXA, the trabecular and cortical microarchitectural parameters by microCT and serum osteocalcin, NTx and leptin concentrations by ELISA assays. Bone mechanical parameters were evaluated through mechanical testing. Osteocyte apoptosis was analyzed with cleaved caspase-3 immunostaining.
Alcohol-fed rats had significantly lower body weight (-28%), fat (-46%) and lean mass (-25%) compared to controls. BMD (-8%), trabecular (-12%) and cortical thickness (-27%) were significantly lower with alcohol whereas porosity (+38%) and pore number (+42%) were higher. Exercise combined with alcohol prevented lower Tb.Th (+20%), Ct.Th (+30%), stress (+26%) and higher Ct.Po (-24%) and osteocyte apoptosis (-91%) compared to A. However, WB BMD (-4%) and femur BMD were still lower in AE versus C.
Regular physical activity has beneficial effects on some microarchitectural parameters in alcohol-fed rats. However, regular treadmill exercise does not compensate for the effects of heavy chronic alcohol consumption on whole body bone density.

Maurel DB, Boisseau N, Pallu S, Rochefort GY…
Joint Bone Spine Oct 2013
PMID: 23380443

Alcohol Reduces Bone Resorption Markers

Abstract

Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion.

The “J shape” curve linking the risk of poor bone health to alcohol intake is now well recognized from epidemiological studies. Ethanol and nonethanol components of alcoholic beverages could influence bone remodeling. However, in the absence of a solid underlying mechanism, the positive association between moderate alcoholic intake and BMD remains questionable because of confounding associated social factors. The objective of this work was to characterize the short-term effects of moderate alcohol consumption on circulating bone markers, especially those involved in bone resorption. Two sequential blood-sampling studies were undertaken in fasted healthy volunteers (age, 20-47 yr) over a 6-h period using beer of different alcohol levels (<0.05-4.6%), solutions of ethanol or orthosilicic acid (two major components of beer), and water +/- calcium chloride (positive and negative controls, respectively). Study 1 (24 subjects) assessed the effects of the different solutions, whereas study 2 (26 subjects) focused on ethanol/beer dose. Using all data in a “mixed effect model,” we identified the contributions of the individual components of beer, namely ethanol, energy, low-dose calcium, and high-dose orthosilicic acid, on acute bone resorption. Markers of bone formation were unchanged throughout the study for all solutions investigated. In contrast, the bone resorption marker, serum carboxy terminal telopeptide of type I collagen (CTX), was significantly reduced after ingestion of a 0.6 liters of ethanol solution (>2% ethanol; p <or= 0.01, RM-ANOVA), 0.6 liters of beer (<0.05-4.6% ethanol; p < 0.02), or a solution of calcium (180 mg calcium; p < 0.001), but only after calcium ingestion was the reduction in CTX preceded by a significant fall in serum PTH (p < 0.001). Orthosilicic acid had no acute effect. Similar reductions in CTX, from baseline, were measured in urine after ingestion of the test solutions; however, the biological variability in urine CTX was greater compared with serum CTX. Modeling indicated that the major, acute suppressive effects of moderate beer ingestion (0.6 liters) on CTX were caused by energy intake in the early phase (approximately 0-3 h) and a “nonenergy” ethanol component in the later phase (approximately 3 to >6 h). The early effect on bone resorption is well described after the intake of energy, mediated by glucagon-like peptide-2, but the late effect of moderate alcohol ingestion is novel, seems to be ethanol specific, and is mediated in a non-calcitonin- and a non-PTH-dependent fashion, thus providing a mechanism for the positive association between moderate alcohol ingestion and BMD.

Sripanyakorn S, Jugdaohsingh R, Mander A, Davidson SL…
J. Bone Miner. Res. Aug 2009
PMID: 19257829 | Free Full Text