Category Archives: Supplements

Chondroitin Suppresses Osteoclasts In Vitro

Abstract

Comparison of the ability of chondroitin sulfate derived from bovine, fish and pigs to suppress human osteoclast activity in vitro.

Chondroitin sulfate (CS) compounds are commonly used to manage OA symptoms. Recent literature has indicated that abnormal subchondral bone metabolism may have a role in the pathogenesis of OA. The aim of this study was to access the effects of chondroitin sulfate obtained from bovine, fish and porcine sources on human osteoclast formation and activity in vitro. Human osteoclasts were generated from blood mononuclear cells. Cells were cultured over 17 days with the addition of macrophage colony stimulating factor (M-CSF) and then stimulated with receptor activator of nuclear factor kappa B ligand from day 7. Cells were treated with the CS commencing from day 7 onwards. To assess effects on osteoclasts, tartrate resistant acid phosphatate (TRAP) expression and resorption of whale dentine assays were used. Bovine-derived CS consistently suppressed osteoclast activity at concentrations as low as 1 μg/ml. Fish and porcine CS was less consistent in their effects varying with different donor cells. All CS compounds had little effect on TRAP activity. mRNA analysis using real-time PCR of bovine CS treated cells indicated that the inhibition of activity was not due to inhibition of the late stage NFATc1 transcription factor (p > 0.05). These results are consistent with CS inhibition of mature osteoclast activity rather than the formation of mature osteoclasts. It would appear that there are differences in activity of the different CS compounds with bovine-derived CS being the most consistently effective inhibitor of osteoclast resorption, but the results need to be confirmed.

Cantley MD, Rainsford KD, Haynes DR
Inflammopharmacology Dec 2013
PMID: 23644893

Chondroitin May Benefit Bones

Abstract

A potential role of chondroitin sulfate on bone in osteoarthritis: inhibition of prostaglandin E₂ and matrix metalloproteinases synthesis in interleukin-1β-stimulated osteoblasts.

To determine the effect of chondroitin sulfate (CS) on inflammatory mediators and proteolytic enzymes induced by interleukin-1β (IL-1β) and related to cartilage catabolism in murine osteoblasts.
Osteoblasts were obtained by enzymatic digestion of calvaria from Swiss mice and cultured for 3 weeks as a primary culture. Cells were then stimulated with IL-1β (1 or 10 ng/ml). CS-treated osteoblasts were incubated with 100 μg/ml of CS during the last week of culture w/o IL-1β for the last 24 h. Expressions of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), 15-PG dehydrogenase (15-PGDH), matrix metalloproteinases-3 and -13 (MMP-3 and -13), osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by real-time polymerase chain reaction (PCR). PGE₂, MMP-3 and MMP-13 release were assessed in the medium by enzyme-linked immunosorbent assay or western-blotting.
IL-1β increased COX-2, mPGES-1, MMP-3, MMP-13, RANKL expressions, decreased 15-PGDH expression, and increased PGE₂, MMP-3 and MMP-13 release. Interestingly, 7 days of CS treatment significantly counteracted IL-1β-induced expression of COX-2 (-62%, P<0.001), mPGES-1 (-63%, P<0.001), MMP-3 (-39%, P=0.08), MMP-13 (-60%, P<0.001) and RANKL (-84%, P<0.001). Accordingly, IL-1β-induced PGE₂, MMP-3 and MMP-13 releases were inhibited by 86% (P<0.001), 58%(P<0.001) and 38% (P<0.01) respectively.
In conclusion, our data demonstrate that, in an inflammatory context, CS inhibits the production of PGE₂ and MMPs. Since CS has previously been shown to counteract the production of these mediators in chondrocytes, we speculate that the beneficial effect of CS in Osteoarthritis (OA) could not only be due to its action on cartilage but also on subchondral bone.

Pecchi E, Priam S, Mladenovic Z, Gosset M…
Osteoarthr. Cartil. Feb 2012
PMID: 22179028

Review: Flaxseed Oil, but not Flax Lignans, may Help Bones

Abstract

Implications of dietary α-linolenic acid in bone health.

Recent evidence implies the benefit of ω-3 polyunsaturated fatty acids in bone health. Although eicosapentaenoic acid and docosahexaenoic acid, present in fish oil, have been extensively researched, much less is known about the influence of α-linolenic acid (ALA; present in flaxseeds), a metabolic precursor of eicosapentaenoic acid and docosahexaenoic acid, on bone. Our objective was to evaluate the published literature and distinguish between the individual effects of flaxseed oil and flax lignans on bone to elucidate the exact role of ALA in skeletal biology. The search was conducted in several databases resulting in 129 articles of which 30 were eligible for inclusion in this review. The studies showed that consumption of whole flaxseeds did not lead to a marked improvement of osteoporotic bones in humans and animals. However, when combined with estrogen therapy, flaxseed supplementation offered an extra benefit to bone in animal models. Similar results were found in studies conducted with flaxseed oil (predominantly ALA), but the favorable role of flaxseed oil was more obvious in various pathologic conditions (kidney disease, obesity with insulin resistance), resulting in improved bone properties. In contrast, despite a marginal estrogenic effect, the consumption of flax lignans resulted in little benefit to bone and the effect was limited to early life of females only in animal models. Based on the available studies, it could be concluded that supplementation with flaxseeds may contribute to some improvement in osteoporotic bone properties but the bone-protective effect may be attributed to ALA, not to the lignan fraction of flaxseeds.

Kim Y, Ilich JZ
Nutrition
PMID: 21726979

Review: Essential Fatty Acids may Help Bones

Abstract

Can manipulation of the ratios of essential fatty acids slow the rapid rate of postmenopausal bone loss?

The rapid rate of postmenopausal bone loss is mediated by the inflammatory cytokines interleukin-1, interleukin-6, and tumor necrosis factor alpha. Dietary supplementation with fish oil, flaxseeds, and flaxseed oil in animals and healthy humans significantly reduces cytokine production while concomitantly increasing calcium absorption, bone calcium, and bone density. Possibilities may exist for the therapeutic use of the omega-3 fatty acids, as supplements or in the diet, to blunt the increase of the inflammatory bone resorbing cytokines produced in the early postmenopausal years, in order to slow the rapid rate of postmenopausal bone loss. Evidence also points to the possible benefit of gamma-linolenic acid in preserving bone density.

Kettler DB
Altern Med Rev Feb 2001
PMID: 11207457 | Free Full Text

Omega-3 from Flaxseed or Nuts may Decrease Resorption

Abstract

An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans.

Human, animal, and in vitro research indicates a beneficial effect of appropriate amounts of omega-3 (n-3) polyunsaturated fatty acids (PUFA) on bone health. This is the first controlled feeding study in humans to evaluate the effect of dietary plant-derived n-3 PUFA on bone turnover, assessed by serum concentrations of N-telopeptides (NTx) and bone-specific alkaline phosphatase (BSAP). Subjects (n = 23) consumed each diet for 6 weeks in a randomized, 3-period crossover design: 1) Average American Diet (AAD; [34% total fat, 13% saturated fatty acids (SFA), 13% monounsaturated fatty acids (MUFA), 9% PUFA (7.7% LA, 0.8% ALA)]), 2) Linoleic Acid Diet (LA; [37% total fat, 9% SFA, 12% MUFA, 16% PUFA (12.6% LA, 3.6% ALA)]), and 3) alpha-Linolenic Acid Diet (ALA; [38% total fat, 8% SFA, 12% MUFA, 17% PUFA (10.5% LA, 6.5% ALA)]). Walnuts and flaxseed oil were the predominant sources of ALA. NTx levels were significantly lower following the ALA diet (13.20 +/- 1.21 nM BCE), relative to the AAD (15.59 +/- 1.21 nM BCE) (p < 0.05). Mean NTx level following the LA diet was 13.80 +/- 1.21 nM BCE. There was no change in levels of BSAP across the three diets. Concentrations of NTx were positively correlated with the pro-inflammatory cytokine TNFalpha for all three diets. The results indicate that plant sources of dietary n-3 PUFA may have a protective effect on bone metabolism via a decrease in bone resorption in the presence of consistent levels of bone formation.

Griel AE, Kris-Etherton PM, Hilpert KF, Zhao G…
Nutr J 2007
PMID: 17227589 | Free Full Text

Fish Oil or Borage Oil Improve Bone in Mice

Abstract

Borage and fish oils lifelong supplementation decreases inflammation and improves bone health in a murine model of senile osteoporosis.

Fats are prevalent in western diets; they have known deleterious effects on muscle insulin resistance and may contribute to bone loss. However, relationships between fatty acids and locomotor system dysfunctions in elderly population remain controversial. The aim of this study was to analyze the impact of fatty acid quality on the age related evolution of the locomotor system and to understand which aging mechanisms are involved. In order to analyze age related complications, the SAMP8 mouse strain was chosen as a progeria model as compared to the SAMR1 control strain. Then, two months old mice were divided in different groups and subjected to the following diets : (1) standard “growth” diet – (2) “sunflower” diet (high ω6/ω3 ratio) – (3) “borage” diet (high γ-linolenic acid) – (4) “fish” diet (high in long chain ω3). Mice were fed ad libitum through the whole protocol. At 12 months old, the mice were sacrificed and tissues were harvested for bone studies, fat and muscle mass measures, inflammation parameters and bone cell marker expression. We demonstrated for the first time that borage and fish diets restored inflammation and bone parameters using an original model of senile osteoporosis that mimics clinical features of aging in humans. Therefore, our study strongly encourages nutritional approaches as relevant and promising strategies for preventing aged-related locomotor dysfunctions.

Wauquier F, Barquissau V, Léotoing L, Davicco MJ…
Bone Feb 2012
PMID: 21664309

High Omega-6 to Omega-3 Ratio is Associated with Lower Bone Density

Abstract

Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study.

Several lines of evidence suggest that n-3 fatty acids reduce the risk of some chronic diseases, including heart disease, diabetes, and cancer. Other research, mainly in animals, also suggests a role in bone health.
We aimed to investigate the association between the ratio of dietary n-6 to n-3 fatty acids and bone mineral density (BMD) in 1532 community-dwelling men and women aged 45-90 y.
Between 1988 and 1992, dietary data were obtained through self-administered food-frequency questionnaires, and BMD was measured at the hip and spine with the use of dual-energy X-ray absorptiometry. A medical history was obtained and current medication use was validated. Age- and multiple-adjusted linear regression analyses were performed.
There was a significant inverse association between the ratio of dietary linoleic acid to alpha-linolenic acid and BMD at the hip in 642 men, 564 women not using hormone therapy, and 326 women using hormone therapy; these results were independent of age, body mass index, and lifestyle factors. An increasing ratio of total dietary n-6 to n-3 fatty acids was also significantly and independently associated with lower BMD at the hip in all women and at the spine in women not using hormone therapy.
A higher ratio of n-6 to n-3 fatty acids is associated with lower BMD at the hip in both sexes. These findings suggest that the relative amounts of dietary polyunsaturated fatty acids may play a vital role in preserving skeletal integrity in older age.

Weiss LA, Barrett-Connor E, von Mühlen D
Am. J. Clin. Nutr. Apr 2005
PMID: 15817874 | Free Full Text

Review: Studies on GLA, Omega 3, and Other Fatty Acids

Abstract

Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties.

Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological processes impacting normal health and chronic diseases, such as the regulation of plasma lipid levels, cardiovascular and immune function, insulin action and neuronal development and visual function. Ingestion of PUFA will lead to their distribution to virtually every cell in the body with effects on membrane composition and function, eicosanoid synthesis, cellular signaling and regulation of gene expression. Cell specific lipid metabolism, as well as the expression of fatty acid-regulated transcription factors, likely play an important role in determining how cells respond to changes in PUFA composition. This review will focus on recent advances on the essentiality of these molecules and on their interplay in cell physiology, leading to new perspective in different therapeutic fields.

Benatti P, Peluso G, Nicolai R, Calvani M
J Am Coll Nutr Aug 2004
PMID: 15310732 | Free Full Text


This article reviewed, among many others, the study from EPA + GLA Increases Bone Density in Elderly Women:

In a single-blind, randomized study, Kruger et al. [174] tested the interactions between calcium and DGLA + EPA in osteoporotic or osteopenic women. All of the women were living in the same institution for the elderly and fed the same low-calcium, non-vitamin D enriched foods, and had similar amounts of sunlight. Subjects were randomly assigned to DGLA + EPA or coconut oil (placebo group); in addition, all received 600 mg/day of calcium. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific ALP rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different results in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%.

 

Vitamin K1 or K2 (MK-4) Does Not Increase Bone Density in Healthy Postmenopausal Women

Abstract

Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women.

Low vitamin K status is associated with low BMD and increased fracture risk. Additionally, a specific menaquinone, menatetrenone (MK4), may reduce fracture risk. However, whether vitamin K plays a role in the skeletal health of North American women remains unclear. Moreover, various K vitamers (e.g., phylloquinone and MK4) may have differing skeletal effects. The objective of this study was to evaluate the impact of phylloquinone or MK4 treatment on markers of skeletal turnover and BMD in nonosteoporotic, postmenopausal, North American women. In this double-blind, placebo-controlled study, 381 postmenopausal women received phylloquinone (1 mg daily), MK4 (45 mg daily), or placebo for 12 mo. All participants received daily calcium and vitamin D(3) supplementation. Serum bone-specific alkaline phosphatase (BSALP) and n-telopeptide of type 1 collagen (NTX) were measured at baseline and 1, 3, 6, and 12 mo. Lumbar spine and proximal femur BMD and proximal femur geometry were measured by DXA at baseline and 6 and 12 mo. At baseline, the three treatment groups did not differ in demographics or study endpoints. Compliance with calcium, phylloquinone, and MK4 treatment was 93%, 93%, and 87%, respectively. Phylloquinone and MK4 treatment reduced serum undercarboxylated osteocalcin but did not alter BSALP or NTX. No effect of phylloquinone or MK4 on lumbar spine or proximal femur BMD or proximal femur geometric parameters was observed. This study does not support a role for vitamin K supplementation in osteoporosis prevention among healthy, postmenopausal, North American women receiving calcium and vitamin D supplementation.

Binkley N, Harke J, Krueger D, Engelke J…
J. Bone Miner. Res. Jun 2009
PMID: 19113922 | Free Full Text