Monthly Archives: September 2013

Naringin Enhances Proliferation of Human Bone Cells In Vitro

Abstract

Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell.

Rhizoma drynariae is used commonly in the treatment of osteoporosis and bone nonunion in traditional Chinese medicine. Modern pharmacological research indicates that naringin is the main effective component of rhizoma drynariae, which can induce the expression of the osteogenic marker in the osteoblast cell line. However, no former study has described its effect on bone mesenchymal stem cells (BMSCs). In our experiment, we co-cultured human BMSCs with different concentrations of naringin solution, then the osteogenic differentiation markers and proliferation ability were analyzed. The results indicated that a certain concentration (1-100 microg/ml) of the naringin solution may enhance the proliferation and osteogenic differentiation of human BMSCs. Also, our research explains excellently the anti-osteoporotic and bone nonunion treatment mechanism of rhizoma drynariae, thus contributing to the exploration of osteogenic differentiation agents from Chinese herbs.

Zhang P, Peng-Zhang , Dai KR, Yan SG…
Eur. J. Pharmacol. Apr 2009
PMID: 19326565

Naringin and Drynariae Rhizoma Reduce Resorption and Enhanced Osteoblasts in Rats

Abstract

Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model.

To investigate if Drynariae rhizoma (DR) and its main ingredient Naringin could reduce alveolar bone loss by stimulating the proliferation and differentiation of osteoblasts.
The effect of DR water (DRWE), ethanolic extract (DREE), and Naringin on MC3T3-E1 cells was evaluated respectively by MTT method and by measuring the activity of alkaline phosphatase (ALP activity) as well as the level of osteocalcin in medium. Bone mineral density (BMD) detection, osteoclast counting by tartrate resistant acid phosphatase staining, and histopathological analysis were performed in an induced rat model of alveolar bone resorption after gastric perfusion with DR extracts or Naringin.
DRWE and Naringin effectively increased the proliferation of MC3T3-E1 cells, whilst DREE and Naringin enhanced the differentiation of osteoblastic cells. The in vivo study indicated an elevated BMD value in the tooth-periodontal tissues from DRWE, DREE and Naringin treated groups after 10, 20 and 30 days of perfusion (P<0.05). In DRWE treated group, the number of osteoclasts at days 10, 20 and 30 decreased remarkably as compared to the corresponding negative controls (P<0.05), and no osteoclast could be found at day 30. New non-calcified bone-like matrix attached by osteoblasts at the root furcation was also shown.
DR could be a supplementary medicine for periodontal therapy as it could reduce bone resorption in rat model of alveolar bone resorption and exert osteogenic effect on osteoblasts.

Chen LL, Lei LH, Ding PH, Tang Q…
Arch. Oral Biol. Dec 2011
PMID: 21764032

Naringin Inhibits Resorption In Vitro

Abstract

Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation.

Osteolytic bone diseases including osteoporosis are commonly accompanied with enhanced osteoclast formation and bone resorption. Naringin, a natural occurring flavonoid has been found to protect against retinoic acid-induced osteoporosis and improve bone quality in rats. Here, we showed that naringin perturbs osteoclast formation and bone resorption by inhibiting RANK-mediated NF-κB and ERK signaling. Naringin suppressed gene expression of key osteoclast marker genes. Naringin was found to inhibit RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α degradation. In addition, naringin inhibited RANKL-induced phosphorylation of ERK. This study identifies naringin as an inhibitor for osteoclast formation and bone resorption, and provides evidence that natural compounds such as naringin might be beneficial as an alternative medicine for the prevention and treatment of osteolysis.

Ang ES, Yang X, Chen H, Liu Q…
FEBS Lett. Sep 2011
PMID: 21835177

Naringin Graft Material Enhances Bone Growth in Rabbits

Abstract

A novel porous gelatin composite containing naringin for bone repair.

As Gu-Sui-Bu (GSB) is a commonly used Chinese medical herb for therapeutic treatment of bone-related diseases, naringin is its main active component. This study elucidates how various concentrations of naringin solution affect the activities of bone cells, based on colorimetric, alkaline phosphatase activity, nodule formation, and tartrate-resistant acid phosphatase activity assays to determine the optimal concentration of naringin. GGT composite was obtained by combining genipin cross-linked gelatin and β-tricalcium phosphate. GGTN composite was prepared by mixing GGT composite with the predetermined concentration of naringin. Porous GGT and GGTN composites were then made using a salt-leaching procedure. The potential of the composites in repairing bone defects was evaluated and compared in vivo by using the biological response of rabbit calvarial bone to these composites. Consequently, the most effective concentration of naringin was 10 mg/mL, which significantly enhanced the proliferation of osteoblasts, osteoclast activity, and nodule formation without affecting the alkaline phosphatase activity of osteoblasts and mitochondrial activity of mixed-bone cells. Radiographic analysis revealed greater new bone ingrowth in the GGTN composite than in the GGT composite at the same implantation time. Therefore, the GGTN composite is highly promising for use as a bone graft material.

Chen KY, Lin KC, Chen YS, Yao CH
Evid Based Complement Alternat Med 2013
PMID: 23431335 | Free Full Text

Neoeriocitrin More Active Than Naringin in Bone Cells

Abstract

Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1.

Naringin is considered the main effective compound of Drynaria Rhizome, which is used commonly in the treatment of osteoporosis in traditional Chinese medicine. However, we found neoeriocitrin, a new compound isolated from Drynaria Rhizome, showed a better activity than naringin on proliferation and osteogenic differentiation in MC3T3-E1. Both neoeriocitrin and naringin exhibited the best effect on proliferation and osteogenic differentiation at concentration of 2μg/ml. Neoeriocitrin more significantly improved proliferation and alkaline phosphatase (ALP) activity as well as up-regulated Runx2, COLI and OCN expression by 56%, 37% and 14% respectively than naringin. Furthermore, neoeriocitrin could rescue the inhibition effect of cell differentiation induced by PD98059 to some degree. Therefore, neoeriocitrin may be a new promising candidate drug for treatment of osteoporosis.

Li L, Zeng Z, Cai G
Phytomedicine Aug 2011
PMID: 21741227

Naringin Improves Bone properties Through Estrogen Receptors in Ovariectomized Mice

Abstract

Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells.

Naringin, a flavanone glycoside in citrus fruits, has been recently reported to stimulate bone formation in vitro and in vivo. The present study was designed to determine if naringin could exert oestrogen-like protective actions in bone.
Young C57/BL6J mice were ovariectomized (OVX) and treated orally with naringin (0.2 or 0.4 mg*g(-1)*day(-1)), 17beta-oestradiol (2 microg*g(-1)*day(-1)) or its vehicle for 6 weeks. Bone mineral densities (BMD) and polar stresss-train index (SSI) were measured by peripheral quantitative computed tomography. Rat osteoblast-like UMR-106 cells were co-incubated with the oestrogen receptor (ER) antagonist ICI 182780 to determine if the effects of naringin on osteoblastic functions were ER dependent. Functional transactivation of ERalpha and ERbeta as well as ERalpha phosphorylation by naringin were also studied.
Naringin at 0.4 mg*g(-1)*day(-1) increased BMD at trabecular-rich bone in OVX mice. Naringin (at both doses) significantly increased SSI at distal femur and lumbar spine and increased biomechanical strength (ultimate load and energy for breaking) at tibia diaphysis in OVX mice. The stimulatory effects of naringin on osteoblastic functions could be abolished by co-incubation with ICI 182780 in UMR-106 cells. Naringin failed to stimulate ERalpha- or ERbeta-mediated oestrogen response element-dependent luciferase activity but could significantly induce ERalpha phosphorylation at serine 118, in UMR-106 cells.
Naringin was effective in protecting against OVX-induced bone loss in mice and its actions might be mediated through ligand-independent activation of ER in osteoblastic cells.

Pang WY, Wang XL, Mok SK, Lai WP…
Br. J. Pharmacol. Apr 2010
PMID: 20397301 | Free Full Text

Rutin Inhibits Osteoclasts by Decreasing ROS and TNF-alpha by Inhibiting NF-kappaB

Abstract

Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappaB.

Rutin, a glycoside of flavonol, inhibits osteoclast formation induced by receptor activator of NF-kappaB ligand (RANKL) in bone marrow-derived macrophages. It reduces reactive oxygen species produced by RANKL and its inhibitory effect results from reduced levels of TNF-alpha. Rutin also lowers NF-kappaB activation in response to RANKL.

Kyung TW, Lee JE, Shin HH, Choi HS
Exp. Mol. Med. Feb 2008
PMID: 18305398 | Free Full Text

Rutin Inhibits Osteopenia in Ovariectomized Rats

Abstract

Rutin inhibits ovariectomy-induced osteopenia in rats.

Several studies suggest that polyphenols might exert a protective effect against osteopenia. The present experiment was conducted to observe the effects of rutin (quercetin-3-O-glucose rhamnose) on bone metabolism in ovariectomized (OVX) rats. Thirty 3-month-old Wistar rats were used. Twenty were OVX while the 10 controls were sham-operated (SH). Among the 20 OVX, for 90 days after surgery 10 were fed the same synthetic diet as the SH or OVX ones, but 0. 25% rutin (OVX + R) was added. At necropsy, the decrease in uterine weight was not different in OVX and OVX + R rats. Ovariectomy also induced a significant decrease in both total and distal metaphyseal femoral mineral density, which was prevented by rutin consumption. Moreover, femoral failure load, which was not different in OVX and SH rats, was even higher in OVX + R rats than in OVX or SH rats. In the same way, on day 90, both urinary deoxypyridinoline (DPD) excretion (a marker for bone resorption) and calciuria were higher in OVX rats than in OVX + R or SH rats. Simultaneously, plasma osteocalcin (OC) concentration (a marker for osteoblastic activity) was higher in OVX + R rats than in SH rats. High-performance liquid chromatography (HPLC) profiles of plasma samples from OVX + R rats revealed that mean plasma concentration of active metabolites (quercetin and isorhamnetin) from rutin was 9.46+/-1 microM, whereas it was undetectable in SH and OVX rats. These results indicate that rutin (and/or its metabolites), which appeared devoid of any uterotrophic activity, inhibits ovariectomy-induced trabecular bone loss in rats, both by slowing down resorption and increasing osteoblastic activity.

Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ…
J. Bone Miner. Res. Nov 2000
PMID: 11092407

Quercetin and Rutin Inhibit Resorption by Their Estrogen Receptor Proteins

Abstract

Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin.

Flavonols, in contrast to soybean isoflavones, are the most abundant phytoestrogens in western diets, being present in onions, beans, fruits, red wine, and tea. They may protect against atherosclerosis, inhibit certain cancer cell types, and reduce bone resorption. The most widely distributed flavonol is quercetin, which occurs mainly as its glycoside, rutin, but data are very scarce regarding the precise mechanism of action of these compounds on bone-resorbing cells at concentrations similar to those detected in human plasma. We have therefore investigated the effects of nanomolar concentrations of quercetin and rutin on the development and activity of osteoclasts in vitro compared with the effects of 17beta-estradiol. Nonadherent porcine bone marrow cells were cultured on dentine slices in the presence of 10 nM 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), with or without 10 nM quercetin, 10 nM rutin or 10 nM 17beta-estradiol for 11 days. Multinuclear TRAP+ cells that resorbed dentine (osteoclasts) developed in the presence of 1,25(OH)2D3, but their number was significantly reduced by quercetin, rutin, and 17beta-estradiol (P < 0.05). Like 17beta-estradiol, both flavonols also significantly reduced resorption (P<0.05) as assessed by the size of pits resorbed on dentine slices. Osteoclasts and osteoclast progenitors contained estrogen receptor alpha (ERalpha), ERbeta, and RANK proteins. Both flavonols increased nuclear ERbeta protein and decreased ERalpha protein of osteoclast progenitors. Moreover, rutin reduced RANK protein, whereas 17beta-oestradiol and quercetin promoted apoptosis by cleavage of caspase-8 and caspase-3. All the effects of flavonols were reversed by 1 microM ICI 182,780, an estrogen antagonist. Thus, the anti-resorbing properties of flavonols are mainly mediated by ER proteins through the inhibition of RANK protein or the activation of caspases.

Rassi CM, Lieberherr M, Chaumaz G, Pointillart A…
Cell Tissue Res. Mar 2005
PMID: 15688188

Hesperidin Prevents Bone Loss in Orchidectomized Mice

Abstract

Hesperidin Prevents Androgen Deficiency-induced Bone Loss in Male Mice.

The purpose of this study was to examine whether hesperidin inhibits bone loss in androgen-deficient male mice. Male ddY mice aged 7 weeks underwent either a sham operation or orchidectomy (ORX) and were divided into five groups: a sham-operated group fed a control diet (Sham) based on AIN-93G formulation with corn oil instead of soy bean oil, an ORX group fed the control diet (ORX), a group fed the control diet containing 0.5% hesperidin (ORX + H), a group fed the control diet containing 0.7% α-glucosylhesperidin (ORX + αG), and a group fed the control diet containing 0.013% simvastatin (ORX + St). Four weeks after intervention, ORX mice showed a striking decrease in seminal vesicle weight, which was not affected by the administration of hesperidin, α-glucosylhesperidin, or simvastatin. Femoral BMD was significantly reduced by ORX, and bone loss was inhibited by the administration of hesperidin, α-glucosylhesperidin or simvastatin. Histomorphometric analysis showed that the bone volume and trabecular thickness were significantly lower, and the osteoclast number was higher in the distal femoral cancellous bone in the ORX group than in the Sham group, and these were normalized in the ORX + H, ORX + αG and ORX + St groups. These results indicate that hesperidin inhibited bone resorption and hyperlipidemia, in ORX mice, and the preventive effect was stronger than that observed in ovariectomized mice in our previous study.

Chiba H, Kim H, Matsumoto A, Akiyama S…
Phytother Res May 2013
PMID: 23674260