Tag Archives: null

High-Fat Diet of Flaxseed or Safflower Oils Improve Bone Strength in Rats; Coconut Oil No Benefit

Abstract

Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats.

Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p < 0.001). Among all high-fat groups, there were no differences in femur BMD (p > 0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.

Lau BY, Fajardo VA, McMeekin L, Sacco SM…
Appl Physiol Nutr Metab Oct 2010
PMID: 20962915

Review: Alkaline Diets and the Acid Load Theory are Bunk – 2013

Abstract

Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney.

The nutritional acid load hypothesis of osteoporosis is reviewed from its historical origin to most recent studies with particular attention to the essential but overlooked role of the kidney in acid-base homeostasis. This hypothesis posits that foods associated with an increased urinary acid excretion are deleterious for the skeleton, leading to osteoporosis and enhanced fragility fracture risk. Conversely, foods generating neutral or alkaline urine would favour bone growth and Ca balance, prevent bone loss and reduce osteoporotic fracture risk. This theory currently influences nutrition research, dietary recommendations and the marketing of alkaline salt products or medications meant to optimise bone health and prevent osteoporosis. It stemmed from classic investigations in patients suffering from chronic kidney diseases (CKD) conducted in the 1960s. Accordingly, in CKD, bone mineral mobilisation would serve as a buffer system to acid accumulation. This interpretation was later questioned on both theoretical and experimental grounds. Notwithstanding this questionable role of bone mineral in systemic acid-base equilibrium, not only in CKD but even more in the absence of renal impairment, it is postulated that, in healthy individuals, foods, particularly those containing animal protein, would induce ‘latent’ acidosis and result, in the long run, in osteoporosis. Thus, a questionable interpretation of data from patients with CKD and the subsequent extrapolation to healthy subjects converted a hypothesis into nutritional recommendations for the prevention of osteoporosis. In a historical perspective, the present review dissects out speculation from experimental facts and emphasises the essential role of the renal tubule in systemic acid-base and Ca homeostasis.

Bonjour JP
Br. J. Nutr. Oct 2013
PMID: 23551968 | Free Full Text


…experiments carried out among patients suffering from severe metabolic acidosis caused by renal insufficiency, or among healthy subjects made acidotic by administering NH4Cl, suggested the involvement of bone tissue in maintaining the acid–base balance. This hypothesis was later refuted on the basis of both theoretical and experimental arguments. Despite this rebuttal, the hypothesis was put forward that bone could play a buffering role, with the consideration that nutrients, particularly animal proteins with their acid load, could be a major cause of osteoporosis. Several recent human studies have shown that there is no relationship between nutritionally induced variations of urinary acid excretion and Ca balance, bone metabolism and the risk of osteoporotic fractures. Variations in human diets across a plausible range of intakes have been shown to have no effect on blood pH. Consistent with this lack of a mechanistic basis, long-term studies of alkalinising diets have shown no effect on the age-related change in bone fragility. Consequently, advocating the consumption of alkalinising foods or supplements and/or removing animal protein from the human diet is not justified by the evidence accumulated over the last several decades.

Magnesium Not Associated with Bone Mass in Young Women

Abstract

Magnesium intake and bone mineral density in young adult women.

The purpose of this study was to determine a possible association between magnesium intake and bone mass in young adult women. Subjects consisted of 106 female university students aged 19-25 years. Calcium and magnesium intakes were evaluated using the duplicate sampling method on three weekdays. Spinal and femoral bone mineral density (BMD) was measured by dual energy X-ray absorptiometry. Mean magnesium intake was 139 mg/day (median 127, SD 54). The correlation between magnesium intake and BMD was of borderline significance (r = 0.175, p = 0.073) for the femoral neck, and was insignificant (r = 0.084, p = 0.391) for the lumbar spine. However, the partial correlation between magnesium intake and BMD of the femoral neck (r = -0.027, p = 0.788), adjusted for calcium intake, was not significant. In conclusion, we did not find an association between magnesium intake and bone mass in young women, and calcium intake needs to be included as an important, potential confounding factor when exploring such an association.

Nakamura K, Ueno K, Nishiwaki T, Saito T…
Magnes Res Dec 2007
PMID: 18271495 | Free Full Text

Magnesium Water No Benefit in Postmenopausal Women

Abstract

A double-blind, placebo-controlled study of the short term effects of a spring water supplemented with magnesium bicarbonate on acid/base balance, bone metabolism and cardiovascular risk factors in postmenopausal women.

A number of health benefits including improvements in acid/base balance, bone metabolism, and cardiovascular risk factors have been attributed to the intake of magnesium rich alkaline mineral water. This study was designed to investigate the effects of the regular consumption of magnesium bicarbonate supplemented spring water on pH, biochemical parameters of bone metabolism, lipid profile and blood pressure in postmenopausal women. In this double-blind, placebo-controlled, parallel-group, study, 67 postmenopausal women were randomised to receive between 1500 mL and 1800 mL daily of magnesium bicarbonate supplemented spring water (650 mg/L bicarbonate, 120 mg/L magnesium, pH 8.3-8.5) (supplemented water group) or spring water without supplements (control water group) over 84 days. Over this period biomarkers of bone turnover (serum parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, osteocalcin, urinary telopeptides and hydroxyproline), serum lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides), venous and urinary pH were measured together with measurements of standard biochemistry, haematology and urine examinations. Serum magnesium concentrations and urinary pH in subjects consuming the magnesium bicarbonate supplemented water increased significantly at Day 84 compared to subjects consuming the spring water control (magnesium – p = 0.03; pH – p = 0.018). The consumption of spring water led to a trend for an increase in parathyroid hormone (PTH) concentrations while the PTH concentrations remained stable with the intake of the supplemented spring water. However there were no significant effects of magnesium bicarbonate supplementation in changes to biomarkers of bone mineral metabolism (n-telopeptides, hydroxyproline, osteocalcin and 1,25-dihydroxyvitamin D) or serum lipids or blood pressure in postmenopausal women from Day 0 to Day 84.
Short term regular ingestion of magnesium bicarbonate supplemented water provides a source of orally available magnesium. Long term clinical studies are required to investigate any health benefits.

Day RO, Liauw W, Tozer LM, McElduff P…
BMC Res Notes 2010
PMID: 20579398 | Free Full Text


The acid/base theory is questionable and this was a low dose of Magnesium.

Vitamin A Not Associated with Bone Density or Fracture in 2016 Perimenopausal Danish Women

Abstract

No effect of vitamin A intake on bone mineral density and fracture risk in perimenopausal women.

In recent studies from Sweden and the United States, a high vitamin A intake has been associated with low bone mineral density (BMD) and increased fracture risk. In Sweden and the United States, food items such as milk and breakfast cereals are fortified with vitamin A, whereas in Denmark there is no mandatory fortification with vitamin A. In the present study, we investigated relations between vitamin A intake and BMD and fracture risk in a Danish population consuming mostly unfortified food items. Within a population-based cohort study in 2,016 perimenopausal women, associations between BMD and vitamin A intake were assessed at baseline and after 5-year follow-up. Moreover, associations between baseline vitamin A intake and 5-year changes in BMD were studied. Finally, fracture risk was assessed in relation to vitamin A intake. In our cohort, dietary retinol intake (0.53 mg/day) was lower than the intake reported in recent studies form Sweden (0.78 mg/day) and the United States (1.66 mg/day). Cross-sectional and longitudinal analyses showed no associations between intake of vitamin A and BMD of the femoral neck or lumbar spine. Neither did BMD differ between those 5% who had the highest, and those 5% who had the lowest, vitamin A intake. During the 5-year study period, 163 subjects sustained a fracture (cases). Compared to 978 controls, logistic regression analyses revealed no difference in vitamin A intake. Thus, in a Danish population, average vitamin A intake is lower than in Sweden and the United States and not associated with detrimental effects on bone.

Rejnmark L, Vestergaard P, Charles P, Hermann AP…
Osteoporos Int Nov 2004
PMID: 15034644

Vitamin K1 May Help Prevent Fractures, But Does Not Improve Bone Density in Women with Osteopenia

Abstract

Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial.

Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.
This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by -1.28% and -1.22% (p = 0.84) (difference of -0.06%; 95% confidence interval [CI] -0.67% to 0.54%) at the lumbar spine and -0.69% and -0.88% (p = 0.51) (difference of 0.19%; 95% CI -0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.
Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers.

Cheung AM, Tile L, Lee Y, Tomlinson G…
PLoS Med. Oct 2008
PMID: 18922041 | Free Full Text

MK-7 at 360mcg for a Year Does Not Benefit Postmenopausal Norwegian Women

Abstract

Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial.

Vitamin K2 may preserve bone strength and reduce fracture risk. In this randomised double-blind placebo-controlled trial among healthy postmenopausal Norwegian women, 1 year supplementation of vitamin K2 in the form of Natto capsules had no effect on bone loss rates. Japanese studies indicate that vitamin K2 (menaquinone-7 (MK-7)) intake may preserve bone strength, but this has not been documented in Europeans. The aim of this study was to assess the effect of MK-7 on bone mineral density (BMD) changes in postmenopausal Norwegian women.
Three hundred thirty-four healthy women between 50 and 60 years, 1-5 years after menopause, were recruited to a randomised double-blind placebo-controlled trial. The participants were randomly assigned into two groups, one receiving 360 microg MK-7 in the form of Natto capsules and the other the same amount of identical-looking placebo capsules containing olive oil. BMD was measured at total hip, femoral neck, lumbar spine and total body at baseline and 12 months together with serum levels of bone-specific alkaline phosphatase, Crosslaps, total osteocalcin (N-mid OC), carboxylated (cOC) and under-carboxylated osteocalcin (ucOC).
After 12 months, there were no statistical differences in bone loss rates between the groups at the total hip or any other measurement site. Serum levels of cOC increased and ucOC decreased in the treatment versus the placebo group (p < 0.001).
MK-7 taken as Natto over 1 year reduced serum levels of ucOC but did not influence bone loss rates in early menopausal women.

Emaus N, Gjesdal CG, Almås B, Christensen M…
Osteoporos Int Oct 2010
PMID: 19937427


360mcg is a fairly high dose, and they took it for a good long time. This is very disappointing  for MK-7.

Vitamin K1 Not Associated with Bone Density or Fracture in Perimenopausal Women

Abstract

No effect of vitamin K1 intake on bone mineral density and fracture risk in perimenopausal women.

Vitamin K functions as a co-factor in the post-translational carboxylation of several bone proteins, including osteocalcin.
The aim of this study was to investigate the relationship between vitamin K(1) intake and bone mineral density (BMD) and fracture risk in a perimenopausal Danish population.
The study was performed within the Danish Osteoporosis Prevention Study (DOPS), including a population-based cohort of 2,016 perimenopausal women. During the study approximately 50% of the women received hormone replacement therapy (HRT). Associations between vitamin K(1) intake and BMD were assessed at baseline and after 5-years of follow-up (cross-sectional design). Moreover, associations between vitamin K(1) intake and 5-year and 10-year changes in BMD were studied (follow-up design). Finally, fracture risk was assessed in relation to vitamin K(1) intake (nested case-control design).
In our cohort, dietary vitamin K(1) intake (60 mug/day) was close to the daily intake recommended by the Food and Agriculture Organization (FAO). Cross-sectional and longitudinal analyses showed no associations between intake of vitamin K(1) and BMD of the femoral neck or lumbar spine. Neither did BMD differ between those 5% that had the highest vitamin K(1) intake and those 5% that had the lowest. During the 10-years of follow-up, 360 subjects sustained a fracture (cases). In a comparison between the cases and 1,440 controls, logistic regression analyses revealed no difference in vitamin K(1) intake between cases and controls.
In a group of perimenopausal and early postmenopausal women, vitamin K(1) intake was not associated with effects on BMD or fracture risk.

Rejnmark L, Vestergaard P, Charles P, Hermann AP…
Osteoporos Int 2006
PMID: 16683180

Low Vitamin K Associated with Fractures in Women, but Not Men

Abstract

Vitamin K intake and bone mineral density in women and men.

Low dietary vitamin K intake has been associated with an increased risk of hip fracture in men and women. Few data exist on the association between dietary vitamin K intake and bone mineral density (BMD).
We studied cross-sectional associations between self-reported dietary vitamin K intake and BMD of the hip and spine in men and women aged 29-86 y.
BMD was measured at the hip and spine in 1112 men and 1479 women (macro x +/- SD age: 59 +/- 9 y) who participated in the Framingham Heart Study (1996-2000). Dietary and supplemental intakes of vitamin K were assessed with the use of a food-frequency questionnaire. Additional covariates included age, body mass index, smoking status, alcohol use, physical activity score, and menopause status and current estrogen use among the women.
Women in the lowest quartile of vitamin K intake (macro x: 70.2 microg/d) had significantly (P < or = 0.005) lower mean (+/- SEM) BMD at the femoral neck (0.854 +/- 0.006 g/cm(2)) and spine (1.140 +/- 0.010 g/cm(2)) than did those in the highest quartile of vitamin K intake (macro x: 309 microg/d): 0.888 +/- 0.006 and 1.190 +/- 0.010 g/cm(2), respectively. These associations remained after potential confounders were controlled for and after stratification by age or supplement use. No significant association was found between dietary vitamin K intake and BMD in men.
Low dietary vitamin K intake was associated with low BMD in women, consistent with previous reports that low dietary vitamin K intake is associated with an increased risk of hip fracture. In contrast, there was no association between dietary vitamin K intake and BMD in men.

Booth SL, Broe KE, Gagnon DR, Tucker KL…
Am. J. Clin. Nutr. Feb 2003
PMID: 12540415 | Free Full Text

EPA + DHA at 1.48g Shows No Benefit in Humans

Abstract

Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults.

Previous research suggests that n-3 PUFA may play a role in bone health. The present analysis aimed to investigate the impact of n-3 PUFA supplementation on bone resorption in adult men and women. Serum samples from 113 mild-moderately depressed individuals (twenty-six males and eighty-seven females, aged 18-67 years) randomised to receive 1.48 g EPA+DHA/d (n 53) or placebo (n 60) for 12 weeks as part of a large recent randomised controlled trial were assayed for n-3 PUFA status and a bone resorption marker, C-terminal cross-linking telopeptide of type 1 collagen (β-CTX). Regression analyses revealed that n-3 PUFA status following supplementation was associated with randomisation (placebo/n-3 PUFA) (B = 3.25, 95 % CI 2.60, 3.91, P < 0.01). However, β-CTX status following supplementation was not associated with randomisation (B = – 0.01, 95 % CI – 0.03, 0.04). Change in β-CTX status was also not associated with change in n-3 PUFA status (B = – 0.002, 95 % CI – 0.01, 0.01). These findings provide no evidence for an association between n-3 PUFA supplementation (1.48 g EPA+DHA/d) for 12 weeks and bone resorption in humans assessed by β-CTX, and suggest that n-3 PUFA supplementation may be unlikely to be of benefit in preventing bone loss.

Appleton KM, Fraser WD, Rogers PJ, Ness AR…
Br. J. Nutr. Apr 2011
PMID: 21129235