Tag Archives: human

Low B Vitamins May be Risk for Bone Loss

Abstract

Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women.

Elevated homocysteine is a strong risk factor for osteoporotic fractures among elders, yet it may be a marker for low B-vitamin status.
Our objective was to examine the associations of plasma concentrations of folate, vitamin B12, vitamin B6, and homocysteine with bone loss and hip fracture risk in elderly men and women. This was a longitudinal follow-up study of the Framingham Osteoporosis Study.
Community dwelling residents of Framingham, MA, were included in the study.
A total of 1002 men and women (mean age 75 yr) was included in the study.
Baseline (1987-1989) blood samples were used to categorize participants into plasma B-vitamin (normal, low, deficient) and homocysteine (normal, high) groups. Femoral neck bone mineral density (BMD) measured at baseline and 4-yr follow-up was used to calculate annual percent BMD change. Incident hip fracture was assessed from baseline through 2003.
Multivariable-adjusted mean bone loss was inversely associated with vitamin B6 (P for trend 0.01). Vitamins B12 and B6 were inversely associated with hip fracture risk (all P for trend < 0.05), yet associations were somewhat attenuated and not significant after controlling for baseline BMD, serum vitamin D, and homocysteine. Participants with high homocysteine (>14 micromol/liter) had approximately 70% higher hip fracture risk after adjusting for folate and vitamin B6, but this association was attenuated after controlling for vitamin B12 (hazard ratio = 1.49; 95% confidence interval 0.91, 2.46).
Low B-vitamin concentration may be a risk factor for decreased bone health, yet does not fully explain the relation between elevated homocysteine and hip fracture. Thus, homocysteine is not merely a marker for low B-vitamin status.

McLean RR, Jacques PF, Selhub J, Fredman L…
J. Clin. Endocrinol. Metab. Jun 2008
PMID: 18364381 | Free Full Text

B6 and Riboflavin Associated with Increased Bone Density

Abstract

Effect of dietary B vitamins on BMD and risk of fracture in elderly men and women: the Rotterdam study.

A mildly elevated homocysteine (Hcy) level is a novel and potentially modifiable risk factor for age-related osteoporotic fractures. Elevated Hcy levels can have a nutritional cause, such as inadequate intake of folate, riboflavin, pyridoxine or cobalamin, which serve as cofactors or substrates for the enzymes involved in the Hcy metabolism. We examined the association between intake of Hcy-related B vitamin (riboflavin, pyridoxine, folate and cobalamin) and femoral neck bone mineral density BMD (FN-BMD) and the risk of fracture in a large population-based cohort of elderly Caucasians. We studied 5304 individuals aged 55 years and over from the Rotterdam Study. Dietary intake of nutrients was obtained from food frequency questionnaires. Incident non-vertebral fractures were recorded during a mean follow-up period of 7.4 years, and vertebral fractures were assessed by X-rays during a mean follow-up period of 6.4 years. We observed a small but significant positive association between dietary pyridoxine (beta = 0.09, p = 1 x 10(-8)) and riboflavin intake (beta = 0.06, p = 0.002) and baseline FN-BMD. In addition, after controlling for gender, age and BMI, pyridoxine intake was inversely correlated to fracture risk. As compared to the three lowest quartiles, individuals in the highest quartile of age- and energy-adjusted dietary pyridoxine intake had a decreased risk of non-vertebral fractures (HR = 0.77, 95% CI = 0.65-0.92, p = 0.005) and of fragility fractures (HR = 0.55, 95% CI = 0.40-0.77, p = 0.0004). Further adjustments for other dietary B vitamins (riboflavin, folate and cobalamin), dietary intake of calcium, vitamin D, vitamin A and vitamin K, protein and energy intake, smoking and BMD did not essentially modify these results. We conclude that increased dietary riboflavin and pyridoxine intake was associated with higher FN-BMD. Furthermore, we found a reduction in risk of fracture in relation to dietary pyridoxine intake independent of BMD. These findings highlight the importance of considering nutritional factors in epidemiological studies of osteoporosis and fractures.

Yazdanpanah N, Zillikens MC, Rivadeneira F, de Jong R…
Bone Dec 2007
PMID: 17936100

Low Riboflavin Predicts Fracture Risk in MTHFR T Postmenopausal Women

Abstract

Low dietary riboflavin but not folate predicts increased fracture risk in postmenopausal women homozygous for the MTHFR 677 T allele.

The MTHFR C677T polymorphism is associated with mildly elevated homocysteine levels when folate and/or riboflavin status is low. Furthermore, a mildly elevated homocysteine level is a risk factor for osteoporotic fractures. We studied whether dietary intake of riboflavin and folate modifies the effects of the MTHFR C677T variant on fracture risk in 5,035 men and women from the Rotterdam Study. We found that the MTHFR C677T variant interacts with dietary riboflavin intake to influence fracture risk in women.
The MTHFR C677T polymorphism is associated with mildly elevated homocysteine (Hcy) levels in the presence of low folate and/or riboflavin status. A mildly elevated Hcy level was recently identified as a modifiable risk factor for osteoporotic fracture. We studied whether dietary intake of riboflavin and folate modifies the effects of the MTHFR C677T polymorphism on BMD and fracture risk.
We studied 5,035 individuals from the Rotterdam Study, >or=55 yr of age, who had data available on MTHFR, nutrient intake, and fracture risk. We performed analysis on Hcy levels in a total of 666 individuals, whereas BMD data were present for 4,646 individuals (2,692 women).
In the total population, neither the MTHFR C677T polymorphism nor low riboflavin intake was associated with fracture risk and BMD. However, in the lowest quartile of riboflavin intake, female 677-T homozygotes had a 1.8 (95% CI: 1.1-2.9, p = 0.01) times higher risk for incident osteoporotic fractures and a 2.6 (95% CI: 1.3-5.1, p = 0.01) times higher risk for fragility fractures compared with the 677-CC genotype (interaction, p = 0.0002). This effect was not seen for baseline BMD in both men and women. No significant influence was found for dietary folate intake on the association between the MTHFR C677T genotype and fracture risk or BMD. In the lowest quartile of dietary riboflavin intake, T-homozygous individuals (men and women combined) had higher (22.5%) Hcy levels compared with C-homozygotes (mean difference = 3.44 microM, p = 0. 01; trend, p = 0.02).
In this cohort of elderly whites, the MTHFR C677T variant interacts with dietary riboflavin intake to influence fracture risk in women.

Yazdanpanah N, Uitterlinden AG, Zillikens MC, Jhamai M…
J. Bone Miner. Res. Jan 2008
PMID: 17725378

Homocysteine Associated with Bone Loss in Elderly Women

Abstract

Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women.

Homocysteine has been suggested to be a risk factor for fracture, but the causal relationship is not clear. In 996 women from the OPRA study, high homocysteine level was associated with high bone marker levels and low BMD at baseline. During a mean 7-year follow-up, high homocysteine level was associated with mortality, but no clear association to fracture risk existed.
Recently, the association between high serum homocysteine (Hcy) levels and an increased risk of fracture has been described.
Hcy levels were measured at baseline in 996 women, all 75 years old. Vitamin B(12), folate, serum cross-linking telopeptide of type I collagen (CTX), serum TRACP5b, serum osteocalcin, urine deoxypyridinoline, PTH, areal BMD (aBMD), calcaneal quantitative ultrasound (QUS), and physical performance were assessed at baseline. Fractures and mortality were recorded during a mean follow-up of 7.0 years.
Bone marker levels were higher in women with Hcy in the highest quartile compared with all other women (p < 0.05). The most evident correlation between Hcy and a bone marker was seen with CTX (r = 0.19, p < 0.001). aBMD (hip) was 4% lower, QUS was up to 2% lower, and gait speed was 11% slower among women with Hcy in the highest quartile compared with the other women (p < 0.05). During the follow-up, 267 women sustained at least one low-energy fracture (including 69 hip fractures). When women in the highest Hcy quartile were compared with all other women, the hazard ratios (HRs) for sustaining any type of fracture was 1.18 (95% CI, 0.89-1.36) and for hip fracture was 1.50 (95% CI, 0.91-1.94). For the same group of women, the mortality risk was 2.16 (95% CI, 1.58-2.55). Adjustments for confounders did not substantially change these associations. Adjustment for PTH increased the HR for hip fracture to 1.67 (95% CI, 1.01-2.17). Low vitamin B(12) or folate was not associated with increased fracture risk or mortality.
High Hcy levels were associated with higher bone turnover, poor physical performance, and lower BMD. There was no clear association to fracture risk. The increased mortality among women with high Hcy levels indicates that a high Hcy level may be a marker of frailty.

Gerdhem P, Ivaska KK, Isaksson A, Pettersson K…
J. Bone Miner. Res. Jan 2007
PMID: 17032146

Low B12 or High Homocysteine Associated with Increased Fracture Risk

Abstract

Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people.

Hyperhomocysteinemia may contribute to the development of osteoporosis. The relationship of Hcy and vitamin B12 with bone turnover markers, BUA, and fracture incidence was studied in 1267 subjects of the Longitudinal Aging Study Amsterdam. High Hcy and low vitamin B12 concentrations were significantly associated with low BUA, high markers of bone turnover, and increased fracture risk.
Hyperhomocysteinemia may contribute to the development of osteoporosis. Vitamin B12 is closely correlated to homocysteine (Hcy). The main objective of our study was to examine the association of Hcy and vitamin B12 status and the combined effect of these two with broadband ultrasound attenuation (BUA), bone turnover markers, and fracture.Subjects were 615 men and 652 women with a mean age of 76 +/- 6.6 (SD) years of the Longitudinal Aging Study Amsterdam (LASA). At baseline (1995/1996), blood samples were taken after an overnight fast for dairy products. Plasma Hcy was measured with IMx, serum vitamin B12 with competitive immunoassay (IA) luminescence, serum osteocalcin (OC) with immunoradiometric assay (IRMA), and urinary excretion of deoxypyridinoline (DPD) with competitive IA and corrected for creatinine (Cr) concentration. CVs were 4%, 5%, 8%, and 5%, respectively. BUA was assessed in the heel bone twice in both the right and left calcaneus. Mean BUA value was calculated from these four measurements. CV was 3.4%. After baseline measurements in 1995, a 3-year prospective follow-up of fractures was carried out until 1998/1999. Subjects were grouped by using two different approaches on the basis of their vitamin B12 concentration, normal versus low (<200 pM) or lowest quartile (Q1) versus normal quartiles (Q2-Q4), and Hcy concentration, normal versus high (>15 microM) or highest quartile (Q4) versus normal quartiles (Q1-Q3). Analysis of covariance was performed to calculate mean values of BUA, OC, and DPD/Cr(urine) based on the specified categories of Hcy and vitamin B12 and adjusted for several confounders (potential confounders were age, sex, body weight, body height, current smoking [yes/no], mobility, cognition). The relative risk (RR) of any fracture was assessed with Cox regression analysis. Quartiles were used when Hcy and vitamin B12 were separately studied in their relationship with fracture incidence.
Fourteen percent of the men and 9% of the women had high Hcy (>15 microM) and low vitamin B12 (<200 pM) concentrations. Women with vitamin B12 levels <200 pM and Hcy concentrations >15 microM had lower BUA, higher DPD/Cr, and higher OC concentrations than their counterparts. In men, no differences were found between the different Hcy and vitamin B12 categories in adjusted means of BUA, OC, or DPD/Cr(urine). Twenty-eight men and 43 women sustained a fracture during the 3-year follow-up period. The adjusted RR for fractures (95% CI) for men with high Hcy and/or low vitamin B12 concentrations was 3.8 (1.2-11.6) compared with men with normal Hcy and vitamin B12 concentrations. Women with high Hcy and/or low vitamin B12 concentrations had an adjusted RR for fractures of 2.8 (1.3-5.7).
High Hcy and low vitamin B12 concentrations were significantly associated with low BUA, high markers of bone turnover, and increased fracture risk.

Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P…
J. Bone Miner. Res. Jun 2005
PMID: 15883631

Riboflavin May Help Regulate Bone Density in Those With MTHFR TT Genotype

Abstract

Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density.

Bone mineral density is a complex trait regulated by an interaction between genetic and environmental factors. Recent studies have identified a functional polymorphism affecting codon 677 of the methylenetetrahydrofolate reductase (MTHFR) gene that is associated with reduced bone mineral density (BMD) in Japanese and Danish postmenopausal women and increased risk of fracture in elderly Danish women. Since dietary B vitamins can influence circulating homocysteine (tHcy) levels, we examined the relationship among MTHFR genotype, B complex vitamins (folate, vitamin B12, vitamin B6 and riboflavin), BMD, and rate of change in BMD in a longitudinal study of 1241 Scottish women aged 45-54 years, at the time of initial study, who were followed up for a mean (SD) of 6.6 (0.7) years. There was no significant association between BMD and either MTHFR genotype or B complex vitamins when examined separately. However, we detected a significant interaction among quartile of energy-adjusted riboflavin intake, MTHFR ‘TT’ genotype, and BMD (P = 0.01 for baseline FN BMD, P = 0.02 for follow-up FN BMD). Increasing dietary riboflavin intake correlated with LS BMD and FN BMD in homozygotes for the MTHFR ‘T’ allele, which remained significant for FN after adjustment for confounders (r = 0.192, P = 0.036 for baseline; r = 0.186, P = 0.043 at follow-up) but not in the other genotypes. This raises the possibility that riboflavin intake and MTHFR genotype might interact to regulate BMD. Further work is required to determine if this association holds true for other populations and ethnic groups.

Macdonald HM, McGuigan FE, Fraser WD, New SA…
Bone Oct 2004
PMID: 15454103

Low LDL Associated with Osteoporosis in Type 2 Diabetics

Abstract

Association of lower serum cholesterol levels with higher risk of osteoporosis in type 2 diabetes.

To determine whether a correlation exists between bone mineral density and circulating lipoprotein levels and whether these variables are independently associated with osteoporosis in patients with type 2 diabetes.
In a cross-sectional analysis, 159 patients with type 2 diabetes were compared with 70 patients without diabetes selected from an outpatient endocrinology clinic in a tertiary care institute during a 1-year period. Variables were gathered through history, physical examination, and laboratory findings, including blood chemistry studies and dual-energy x-ray absorptiometry.
Of the 229 study patients, 86 (37.6%) had osteoporosis. In the patients with diabetes, the mean +/- SD of age, weight, total cholesterol, and low-density lipoprotein (LDL) cholesterol in those with and without osteoporosis was 72.3 +/- 10.4 years versus 63.6 +/- 11.0 years, 74.2 +/- 14.4 kg versus 83.7 +/- 15.5 kg, 178.4 +/- 33.7 mg/dL versus 194.1 +/- 33.9 mg/dL, and 100.0 +/- 27.1 mg/dL versus 114.2 +/- 30.2 mg/dL, respectively (P<0.01 for all variables). After adjustment for other variables, multiple logistic regression analysis showed that the presence of diabetes was associated with a lower risk of osteoporosis. Similarly, older age and lower body weight, LDL levels, and serum calcium levels were independently associated with lumbar spine osteoporosis in patients with diabetes, in comparison with older age and lower weight in patients without diabetes. Lower weight and older age were associated with femoral neck and total hip osteoporosis in patients with diabetes, in comparison with only older age in patients without diabetes.
The presence of type 2 diabetes is associated with a lower risk of osteoporosis. In patients with type 2 diabetes, a lower LDL level is more likely to be associated with osteoporosis at the lumbar spine.

Afshinnia F, Chacko S, Zahedi T
Endocr Pract Oct 2007
PMID: 17954418

Cardiovascular Disease Associated with Lower Bone Density

Abstract

The association of bone mineral density measures with incident cardiovascular disease in older adults.

The associations of volumetric and areal bone mineral density (BMD) measures with incident cardiovascular disease (CVD) were studied in a biracial cohort of 2,310 older adults. BMD measures were inversely related to CVD in women and white men, independent of age and shared risk factors for osteoporosis and CVD.
We investigated the associations of volumetric (vBMD) and areal (aBMD) bone mineral density measures with incident cardiovascular disease (CVD) in older adults enrolled in the Health, Aging, and Body Composition study.
The incidence of CVD was ascertained in 2,310 well-functioning white and black participants (42% black; 55% women), aged 68-80 years. aBMD measures of the hip were assessed using DXA. Spine trabecular, integral, and cortical vBMD measures were obtained using QCT.
During an average follow-up of 5.4 years, 23% of men and 14% of women had incident CVD. Spine vBMD measures were inversely associated with incident CVD in white men [HR(integral)=1.39, 95% CI 1.03-1.87; HR(cortical)=1.38, 95% CI 1.03-1.84], but not in black men. In women, aBMD measures of the total hip (HR = 1.36, 95% CI 1.03-1.78), femoral neck (HR = 1.44, 95% CI 1.10-1.90), and trochanter (HR = 1.34, 95% CI 1.04-1.72) exhibited significant associations with CVD in blacks, but not in whites. All associations were independent of age and shared risk factors between osteoporosis and CVD, and were not explained by inflammatory cytokines or oxidized LDL.
Our results provide support for an inverse association between BMD and incident CVD. Further research should elucidate possible pathophysiological mechanisms linking osteoporosis and CVD.

Farhat GN, Newman AB, Sutton-Tyrrell K, Matthews KA…
Osteoporos Int Jul 2007
PMID: 17285350

Lipids not Associated with Bone Density in Korean Women

Abstract

Association between Serum Cholesterol Level and Bone Mineral Density at Lumbar Spine and Femur Neck in Postmenopausal Korean Women.

Blood lipid profiles have been suggested to be a risk factor for osteoporosis. However, the association between lipid profiles and bone mineral density (BMD) is still unclear. This study aimed to evaluate an association between blood lipid profiles and BMD through both a cross-sectional and a longitudinal study.
Study subjects were 958 postmenopausal Korean women who have repeatedly undertaken laboratory tests and BMD measurements at lumbar spine and femur neck with an interval of 7.1 years. The associations between lipid profiles and BMD were examined using Spearman correlation analysis with an adjustment for age, smoking, alcohol drinking, physical activity, body mass index, and follow-up duration.
Lumbar spine BMD was not associated with total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HLD-C) regardless of when the measurement was performed. In an analysis using data measured at the beginning of the study, femur neck BMD was not associated with TC and LDL-C. However, femur neck BMD showed weak but significantly positive correlation with HDL-C (correlation coefficient, 0.077; 95% confidence interval, 0.005 to 0.149). When the analysis was repeated with data measured at the end of the follow-up, there was no significant correlation between femur neck BMD and any lipid profile. In addition, change in femur neck BMD during follow-up was not associated with the change in lipid profiles.
Although further study with a consideration of calcium intake and osteoporosis medication seems necessary, this study found no association between serum lipid profiles and BMD in postmenopausal Korean women.

Go JH, Song YM, Park JH, Park JY…
Korean J Fam Med May 2012
PMID: 22787539 | Free Full Text

Lipids, Obesity, and Bone Density

Abstract

Lipid profile, obesity and bone mineral density: the Hertfordshire Cohort Study.

Body mass index (BMI) and bone mineral density (BMD) are positively correlated in several studies, but few data relate bone density, lipid profile and anthropometric measures.
To investigate these relationships in a large, well-characterized cohort of men and women (The Hertfordshire Cohort Study).Men (n = 465) and women (n = 448) from Hertfordshire, UK were recruited. Information was available on demographic and lifestyle factors, anthropometric measurements, body fat percentage, fasting triglycerides, cholesterol (total, HDL, LDL), apolipoprotein (a) and apolipoprotein (b); bone mineral density (BMD) was recorded at the lumbar spine and total femur.
BMD at the lumbar spine (males r = 0.15, p = 0.001; females r = 0.14, p = 0.003) and total femoral region (males r = 0.18, p = 0.0001; females r = 0.16, p = 0.0008) was related to serum triglyceride level, even after adjustment for waist-hip ratio, age, social class and lifestyle factors, but not if body fat percentage was substituted for waist-hip ratio in the regression model. Fasting HDL cholesterol level was related to lumbar spine BMD in women (r = -0.15, p = 0.001) and total femoral BMD in both sexes (males r = -0.15, p = 0.002; females r = -0.23, p < 0.0001); these relationships were also attenuated by adjustment for body fat percentage but not waist-hip ratio. No relationships were seen between total or LDL cholesterol with BMD.
In this cohort, relationships between lipid profile and BMD were robust to adjustment for one measure of central obesity (waist-hip ratio), but not total body fat. This broadly supports the idea that adiposity may confound the relationship between lipids and bone mass.

Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ…
QJM May 2007
PMID: 17449479 | Free Full Text


A number of studies have suggested a positive relationship between BMD and triglyceride level, in concordance with our own findings [10,13], while the literature concerning relationships between HDL cholesterol levels and BMD is conflicting [12, 13,15,15, 18,19]. While D’Amelio et al [12] found an inverse relationship similar to our own results, Yamaguchi et al [14] described a positive relationship, and Cui et al [13] and Poli et al [15] described no relationship.