Tag Archives: free full text

Review: Vitamin K and Bone Health

Abstract

Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health.

Vitamin K occurs in nature as a series of compounds with a common 2-methyl- 1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. They comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains. The major dietary source to humans is phylloquinone for which the chief food contributors are green, leafy vegetables followed by certain vegetable oils (soybean, rapeseed and olive oils). Recent analyses by high pressure liquid chromatography are now providing a wide-ranging database of phylloquinone in foods. Menaquinones are found in moderate concentrations in only a few foods such as cheeses (MK-8 and MK-9). A wider spectrum of MKs is synthesized by the gut microflora, and their intestinal absorption probably accounts for most of the hepatic stores, particularly those with very long side chains (MKs-10-13) synthesized by members of the genus Bacteroides. The site of absorption of floral MKs is not known, but reasonable concentrations are found in the terminal ileum where bile salt-mediated absorption is possible. Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small and predominantly MKs-7-13. The hepatic reserves of phylloquinone (approximately 10% of the total) are labile and turn over at a faster rate than menaquinones. Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. A majority (approximately 60-70%) of the daily dietary intake of phylloquinone is lost to the body by excretion, which emphasizes the need for a continuous dietary supply to maintain tissue reserves.

Shearer MJ, Bach A, Kohlmeier M
J. Nutr. Apr 1996
PMID: 8642453 | Free Full Text


At the present time the human requirements for vitamin K are based solely on its classical function in coagulation being listed as a Recommended Dietary Allowance (RDA) in the United States (Suttie 1992) and a Safe and Adequate Intake in the United Kingdom (Department of Health Report 1991). In both cases these requirements were set at a value of 1 mcg/kg/d. If, as argued by Vermeer et al. and Kohlmeier et al. in this volume, vitamin K is important to bone health and its requirements for this bone function are greater than for its hepatic function, a great challenge to researchers and future committees alike is to determine whether these putative extra demands can be quantified more precisely. Finally, it should be noted that the concept of reexamining the optimal intake of a vitamin with respect to the extra health benefits, which may be conferred by giving amounts over and above those required to protect against the originally discovered deficiency disease, is not new. There is already a recognition of the newer and often unexpected roles played by several other vitamins including in some cases the beneficial effects of extra intakes (Sauberlich and Machlin 1992).

Low Vitamin K Associated with Fractures in Women, but Not Men

Abstract

Vitamin K intake and bone mineral density in women and men.

Low dietary vitamin K intake has been associated with an increased risk of hip fracture in men and women. Few data exist on the association between dietary vitamin K intake and bone mineral density (BMD).
We studied cross-sectional associations between self-reported dietary vitamin K intake and BMD of the hip and spine in men and women aged 29-86 y.
BMD was measured at the hip and spine in 1112 men and 1479 women (macro x +/- SD age: 59 +/- 9 y) who participated in the Framingham Heart Study (1996-2000). Dietary and supplemental intakes of vitamin K were assessed with the use of a food-frequency questionnaire. Additional covariates included age, body mass index, smoking status, alcohol use, physical activity score, and menopause status and current estrogen use among the women.
Women in the lowest quartile of vitamin K intake (macro x: 70.2 microg/d) had significantly (P < or = 0.005) lower mean (+/- SEM) BMD at the femoral neck (0.854 +/- 0.006 g/cm(2)) and spine (1.140 +/- 0.010 g/cm(2)) than did those in the highest quartile of vitamin K intake (macro x: 309 microg/d): 0.888 +/- 0.006 and 1.190 +/- 0.010 g/cm(2), respectively. These associations remained after potential confounders were controlled for and after stratification by age or supplement use. No significant association was found between dietary vitamin K intake and BMD in men.
Low dietary vitamin K intake was associated with low BMD in women, consistent with previous reports that low dietary vitamin K intake is associated with an increased risk of hip fracture. In contrast, there was no association between dietary vitamin K intake and BMD in men.

Booth SL, Broe KE, Gagnon DR, Tucker KL…
Am. J. Clin. Nutr. Feb 2003
PMID: 12540415 | Free Full Text

Vitamin K2 MK-4 Improves Bone Strength, but Not Density, in Postmenopausal Women

Abstract

Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women.

Vitamin K mediates the synthesis of proteins regulating bone metabolism. We have tested whether high vitamin K(2) intake promotes bone mineral density and bone strength. Results showed that K(2) improved BMC and femoral neck width, but not DXA-BMD. Hence high vitamin K(2) intake may contribute to preventing postmenopausal bone loss.
Vitamin K is involved in the synthesis of several proteins in bone. The importance of K vitamins for optimal bone health has been suggested by population-based studies, but intervention studies with DXA-BMD as a clinical endpoint have shown contradicting results. Unlike BMC, DXA-BMD does not take into account the geometry (size, thickness) of bone, which has an independent contribution to bone strength and fracture risk. Here we have tested whether BMC and femoral neck width are affected by high vitamin K intake.
A randomized clinical intervention study among 325 postmenopausal women receiving either placebo or 45 mg/day of vitamin K(2) (MK-4, menatetrenone) during three years. BMC and hip geometry were assessed by DXA. Bone strength indices were calculated from DXA-BMD, femoral neck width (FNW) and hip axis length (HAL).
K(2) did not affect the DXA-BMD, but BMC and the FNW had increased relative to placebo. In the K(2)-treated group hip bone strength remained unchanged during the 3-year intervention period, whereas in the placebo group bone strength decreased significantly.
Vitamin K(2) helps maintaining bone strength at the site of the femoral neck in postmenopausal women by improving BMC and FNW, whereas it has little effect on DXA-BMD.

Knapen MH, Schurgers LJ, Vermeer C
Osteoporos Int Jul 2007
PMID: 17287908 | Free Full Text

Curcumin Decreases Proliferation and Mineralization of Human Osteoblasts In Vitro

Abstract

Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: implications of nitric oxide.

Curcumin (diferuloylmethane) is found in the rhizomes of the turmeric plant (Curcuma longa L.) and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO) is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS), and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s) by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63), we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, Calderon-Garcia JF…
Int J Mol Sci 2012
PMID: 23443113 | Free Full Text

High-Dose Curcumin Increases Bone Strength and Density in Ovariectomized Rats

Abstract

Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat.

Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats.
Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test.
High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015).
The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.

Cho DC, Jung HS, Kim KT, Jeon Y…
J Korean Neurosurg Soc Dec 2013
PMID: 24527187 | Free Full Text

Curcumin Decreases Bone Density in Rats

Abstract

Effects of curcumin on the skeletal system in rats.

There is increasing interest in the discovery of natural compounds that could favorably affect the skeletal system. Curcumin is a constituent of turmeric, a plant which has been used for centuries as a dietary spice and a traditional Indian medicine. Curcumin has been reported to affect differentiation, activity and the lifespan of osteoblasts and osteoclasts in vitro. The aim of the present study was to investigate the effects of curcumin on the skeletal system of rats in vivo. Curcumin (10 mg/kg, po daily) was administered for four weeks to normal (non-ovariectomized) and bilaterally ovariectomized (estrogen-deficient) three-month-old female Wistar Cmd:(WI)WU rats. Ovariectomy was performed seven days before the start of curcumin administration. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, as well as the mechanical properties of the bone, were examined. Serum total cholesterol and estradiol levels were also determined. In rats with normal estrogen levels, curcumin decreased serum estradiol level and slightly increased cancellous bone formation, along with decreased mineralization. Estrogen deficiency induced osteoporotic changes in the skeletal system of the ovariectomized control rats. In ovariectomized rats, curcumin decreased body mass gain and serum total cholesterol level, slightly improved some bone histomorphometric parameters impaired by estrogen deficiency, but did not improve bone mineralization or mechanical properties. In conclusion, the results of the present in vivo study in rats did not support the hypothesis that curcumin, at doses that are readily achievable through dietary intake, could be useful for the prevention or treatment of osteoporosis.

Folwarczna J, Zych M, Trzeciak HI
Pharmacol Rep
PMID: 21098873 | Free Full Text

Curcumin, Japanese Apricot, and Others, Effects on Osteoclasts in Mice In Vitro

Abstract

Screening of Korean medicinal plants for possible osteoclastogenesis effects in vitro.

Bone undergoes continuous remodeling through bone formation and resorption, and maintaining the balance for skeletal rigidity. Bone resorption and loss are generally attributed to osteoclasts. Differentiation of osteoclasts is regulated by receptor activator of nuclear factor NF-kB ligand (RANKL), a member of tumor necrosis factor family. When the balance is disturbed, pathological bone abnormality ensues. Through the screening of traditional Korean medicinal plants, the effective molecules for inhibition and stimulation of RANKL-induced osteoclast differentiation in mouse bone marrow macrophages were identified. Among 222 methanol extracts, of medicinal plants, 10 samples exhibited ability to induce osteoclast differentiation. These include Dryobalanops aromatica, Euphoria longana, Lithospermum erythrorhizon, Prunus mume, Prunus nakaii, and Polygonatum odoratum. In contrast, Ailanthus altissima, Curcuma longa, Solanum nigrum, Taraxacum platycarpa, Trichosanthes kirilowii, and Daphne genkwa showed inhibitory effects in RANKL-induced osteoclast differentiation.

Youn YN, Lim E, Lee N, Kim YS…
Genes Nutr Feb 2008
PMID: 18850234 | Free Full Text

Turmeric Inhibits Osteoclasts in Rat Model of Rheumatoid Arthritis

Abstract

Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis.

Scientific evidence is lacking for the antiarthritic efficacy of turmeric dietary supplements that are being promoted for arthritis treatment. Therefore, we undertook studies to determine the antiarthritic efficacy and mechanism of action of a well-characterized turmeric extract using an animal model of rheumatoid arthritis (RA).
The composition of commercial turmeric dietary supplements was determined by high-performance liquid chromatography. A curcuminoid-containing turmeric extract similar in composition to these supplements was isolated and administered intraperitoneally to female Lewis rats prior to or after the onset of streptococcal cell wall-induced arthritis. Efficacy in preventing joint swelling and destruction was determined clinically, histologically, and by measurement of bone mineral density. Mechanism of action was elucidated by analysis of turmeric’s effect on articular transcription factor activation, microarray analysis of articular gene expression, and verification of the physiologic effects of alterations in gene expression.
A turmeric fraction depleted of essential oils profoundly inhibited joint inflammation and periarticular joint destruction in a dose-dependent manner. In vivo treatment prevented local activation of NF-kappaB and the subsequent expression of NF-kappaB-regulated genes mediating joint inflammation and destruction, including chemokines, cyclooxygenase 2, and RANKL. Consistent with these findings, inflammatory cell influx, joint levels of prostaglandin E(2), and periarticular osteoclast formation were inhibited by turmeric extract treatment.
These translational studies demonstrate in vivo efficacy and identify a mechanism of action for a well-characterized turmeric extract that supports further clinical evaluation of turmeric dietary supplements in the treatment of RA.

Funk JL, Frye JB, Oyarzo JN, Kuscuoglu N…
Arthritis Rheum. Nov 2006
PMID: 17075840 | Free Full Text

Curcumin Inhibits Osteoclasts in Mouse Cells

Abstract

Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis.

Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.

Bharti AC, Takada Y, Aggarwal BB
J. Immunol. May 2004
PMID: 15128775 | Free Full Text

Bisphosphonates and Osteonecrosis Laser Treatment

Abstract

Bisphosphonates and osteonecrosis: an open matter.

Osteonecrosis of the Jaw (ONJ) in patients on long-term Bisphosphonate Therapy (BPT) is being reported in the last ten years in the literature with increasing frequency. The therapy for this condition is a real dilemma. Temporary suspension of BPT offers no short term benefits, hyperbaric oxygen has no proven efficiency and therefore is not recommended, intermittent or continuous antibiotic with surgical debridement can be beneficial to palliate the symptoms. Er:YAG laser can be used to eliminate necrotic portions of the bone by partial or total resection of the jaws as an alternative to conventional rotary tools. The high degree of affinity of this wavelength for water and hydroxyapatite means the soft tissue and bone can both be treated. The technique can also be used for conservative interventions by gradually evaporating the part of necrotic bone, getting close to the healthy area. One certain advantage of the Er:YAG laser is its bactericidal and biostimulatory action, inducing the healing of the soft tissues and the bone, quicker than in conventional treatments. In conclusion, from our experience, it is possible to observe that an early conservative surgical approach with Er:YAG laser associated to biostimulation, LLLT (Low Level Laser Therapy), for BRONJ could be considered as more efficacious in comparison to medical therapy or other techniques.

Vescovi P
Clin Cases Miner Bone Metab Sep 2012
PMID: 23289026 | Free Full Text