Tag Archives: animal

Saurolactam Inhibits Osteoclasts In Vitro

Abstract

Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts.

The receptor activator of nuclear factor-kappaB ligand (RANKL) plays a critical role in the differentiation and bone resorptive activity of osteoclasts. Recently, the development of anti-resorptive agents from natural substances has become a subject of interest. Therefore, we evaluated the effects of 222 natural compounds on the RANKL-induced tartrate-resistance acid phosphatase (TRAP; a marker for osteoclast differentiation) activity and multinucleated osteoclast formation in RAW264.7 murine macrophage cells. We found that saurolactam was one of the compounds inhibiting the RANKL-induced osteoclastogenesis; it significantly inhibited the RANKL-induced TRAP activity and formation of multinucleated osteoclasts without any cytotoxicity. Interestingly, saurolactam prevented RANKL-induced activation of MAP kinases and NF-kappaB, and mRNA expression of osteoclast-related genes and transcription factors (c-Fos, Fra-2, and NFATc1). We also observed the inhibitory effect of saurolactam on the differentiation of mouse bone marrow-derived macrophages into osteoclasts. Furthermore, saurolactam inhibited the bone resorptive activity of mature osteoclasts with the induction of apoptotic signaling cascade and the inhibition of survival signaling pathways such as c-Src/PI3K/Akt, Ras/ERK, and JNK/c-Jun. In conclusion, although further studies are needed to determine the precise mechanism and biological efficacy of saurolactam in osteoclast-mediated bone disorders, our results demonstrate that saurolactam potentially inhibits osteoclast differentiation by preventing the activation of MAP kinases and transcription factors that consequently affect the regulation of genes required for osteoclastogenesis, and the bone resorptive activity of mature osteoclasts by inhibiting osteoclast survival-related signaling pathways and triggering the apoptotic signaling cascade.

Kim MH, Ryu SY, Choi JS, Min YK…
J. Cell. Physiol. Dec 2009
PMID: 19653230

Glucosamine Detrimental to Intervertebral Disc In Vitro

Abstract

The effects of glucosamine sulfate on intervertebral disc annulus fibrosus cells in vitro.

Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection.
The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading.
Controlled in vitro laboratory setting.
Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1β and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM, and the authors have no conflicts of interest.
Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose-dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, matrix metalloproteinase-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested.
These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation but not under conditions where mechanical loading is present or in which matrix synthesis is needed.

Sowa GA, Coelho JP, Jacobs LJ, Komperda K…
Spine J Dec 2013
PMID: 24361347

Glucosamine has Negative Effect On Intervertebral Discs

Abstract

Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration.

Study Design. Laboratory based controlled in vivo study Objective. To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration. Summary of Background Data. Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration.Methods. Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses.
Results. The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix.
Conclusions. These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these findings.

Jacobs L, Vo N, Coehlo JP, Dong Q…
Spine Jan 2013
PMID: 23324939

Glucosamine Inhibits Bone Resorption in Rats

Abstract

Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine.

Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling.
The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry.
The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels.
Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints.

Ivanovska N, Dimitrova P
Arthritis Res. Ther. 2011
PMID: 21410959 | Free Full Text

Glucosamine Accelerates Fracture Repair in Rats

Abstract

Glucosamine-sulfate on fracture healing.

The aim of this study is to determine whether glucosamine-sulfate has any effects on bone-healing.
A unilateral fracture was created in the tibia of sixty-one female rats. Rats were given no drug or 230 mg/kg glucosamine-sulfate daily. Fractures were analyzed during the first, second and fourth weeks after creation of fracture. Quantitative measurement for new bone formation and osteoblast lining were determined histologically. Semiquantitative score for fracture healing was used for histomorphometric analyses. Bridging bone formation was assessed radiographically.
New bone formation and osteoblast lining were significantly higher in glucosamine-treated group at week 1. Surrounding connective tissue was more cellular and vascular, and the newly formed bone trabecules were present in greater amounts in glucosamine-treated group, compared to control group at week 1 and 4. But radiologically, the control group had better scores than that of the glucosamine-treated group at week 4.
These data demonstrate that daily glucosamine-sulfate administration accelerates early phase of fracture repair in the rat tibia, with increased new bone formation and osteoblast lining histologically, but radiologic bone union is not favored on radiographs.

Uğraş A, Güzel E, Korkusuz P, Kaya I…
Ulus Travma Acil Cerrahi Derg Jan 2013
PMID: 23588972 | Free Full Text

Glucosamine No Effect on Three Bone Markers in Horses

Abstract

Serum concentrations of keratan sulfate, osteocalcin, and pyridinoline crosslinks after oral administration of glucosamine to standardbred horses during race training.

To determine the effects of orally administered glucosamine on concentrations of markers of bone and cartilage metabolism in Standardbred horses during race training.
Twenty 16- to 20-month-old Standardbreds beginning race training.
Horses were randomly assigned to 2 groups. One group received glucosamine hydrochloride (4 g, PO, q 12 h), and the second (control) group received glucose (4 g, PO, q 12 h). Serum samples were obtained prior to onset of the study (baseline) and at regular intervals for 48 weeks for determination of concentrations of keratan sulfate (KS), osteocalcin (OC), and pyridinoline crosslinks (PYD).
Osteocalcin concentrations changed significantly with time; mean serum concentrations were significantly higher than baseline values for samples obtained at 24 to 48 weeks after onset of the study. Although a significant effect of time was observed for mean concentration of KS, concentrations did not differ significantly from baseline values at any time during the study when groups were analyzed separately. However, pooled analysis revealed significant increases of mean serum KS concentration at weeks 24 and 30. Significant changes in serum PYD concentrations were not detected. Oral administration of glucosamine did not significantly affect serum concentrations of any of the markers.
Increased serum OC in clinically normal Standardbreds during race training may reflect bone formation that accompanies adaptive remodeling of the appendicular skeleton. For these experimental conditions, glucosamine did not appear to exert a detectable influence on serum concentrations of these 3 markers of connective tissue metabolism.

Caron JP, Peters TL, Hauptman JG, Eberhart SW…
Am. J. Vet. Res. Aug 2002
PMID: 12171162

Tualang Honey Improves Bone Structure in Ovariectomized Rats

Abstract

Protective effects of Tualang honey on bone structure in experimental postmenopausal rats.

The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats.
Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment.
All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group.
In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.

Zaid SS, Sulaiman SA, Othman NH, Soelaiman IN…
Clinics (Sao Paulo) Jul 2012
PMID: 22892923 | Free Full Text


From “Review of the Medicinal Effects of Tualang Honey and a Comparison with Manuka Honey

Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The honey is produced by the rock bee (Apis dorsata), which builds hives on branches of tall Tualang trees located mainly in the north-western region of Peninsular Malaysia. This review collates the results of the various studies of TH that range from research on tissue culture to randomised control clinical trials. Findings thus far show that, TH has antimicrobial, anti-inflammatory, antioxidant, antimutagenic, antitumor, and antidiabetic properties, in addition to wound-healing attributes. Some of its properties are similar to the well-researched Manuka honey (New Zealand and/or Australian monofloral honey). Distinct differences include higher phenolics, flavonoids, and 5-(hydroxymethyl) furfural (HMF). Compared with Manuka honey, TH is also more effective against some gram-negative bacterial strains in burn wounds.

 

Glycation Suppresses Bone Formation

Abstract

Advanced glycation end products suppress osteoblastic differentiation of stromal cells by activating endoplasmic reticulum stress.

Advanced glycation end products (AGEs) are involved in bone quality deterioration in diabetes mellitus. We previously showed that AGE2 or AGE3 inhibited osteoblastic differentiation and mineralization of mouse stromal ST2 cells, and also induced apoptosis and decreased cell growth. Although quality management for synthesized proteins in endoplasmic reticulum (ER) is crucial for the maturation of osteoblasts, the effects of AGEs on ER stress in osteoblast lineage are unknown. We thus examined roles of ER stress in AGE2- or AGE3-induced suppression of osteoblastogenesis of ST2 cells. An ER stress inducer, thapsigargin (TG), induced osteoblastic differentiation of ST2 cells by increasing the levels of Osterix, type 1 collagen (Col1), alkaline phosphatase (ALP) and osteocalcin (OCN) mRNA. AGE2 or AGE3 suppressed the levels of ER stress sensors such as IRE1α, ATF6 and OASIS, while they increased the levels of PERK and its downstream molecules, ATF4. A reduction in PERK level by siRNA did not affect the AGEs-induced suppression of the levels of Osterix, Col1 and OCN mRNA. In conclusion, AGEs inhibited the osteoblastic differentiation of stromal cells by suppressing ER stress sensors and accumulating abnormal proteins in the cells. This process might accelerate AGEs-induced suppression of bone formation found in diabetes mellitus.

Tanaka K, Yamaguchi T, Kaji H, Kanazawa I…
Biochem. Biophys. Res. Commun. Aug 2013
PMID: 23933252

Melatonin Benefits Bones in Old Rats

Abstract

Melatonin dietary supplement as an anti-aging therapy for age-related bone loss.

Introduction: Previous studies have shown that melatonin, an antioxidant molecule secreted from the pineal gland, is a positive regulator of bone mass. However, melatonin potential effects on bone mass have never been investigated in old population yet. The aim of this study was to assess the effects of dietary melatonin supplementation on mass accrual and biomechanical properties of old rat femora. Methods: Twenty 22-months-old male Wistar rats were divided into 2 randomly assigned groups. The first group was treated for 10 weeks with melatonin, whereas the second group left untreated (control). Rat femurs were collected, and their phenotypes and biomechanical properties were investigated by micro-computed tomography, histomorphometry and 3-point-bending test. Statistical analyses were performed by Student’s two-tailed unpaired t-test. In all experiments, a value of p < 0.05 was considered significant. Results: Rats treated with melatonin had higher bone volume, bone trabecular number, trabecular thickness and cortical thickness in comparison to control group. Histomorphometric analyses confirmed the increase of bone volume in melatonin-treated rats. In agreement with these findings, melatonin-treated rats demonstrated with higher bone stiffness, flexural modulus and ultimate load compared to controls. Conclusion: These compelling results are the first evidence indicating that dietary melatonin supplementation is able to exert beneficial effects against age-related bone loss in old rats; improving the microstructure and biomechanical properties of aged bones.

Tresguerres IF, Tamimi F, Eimar H, Barralet J…
Rejuvenation Res Mar 2014
PMID: 24617902

CR Suppresses Bone Formation and Increases Resorption in Obese Rats

Abstract

Energy-restricted diet benefits body composition but degrades bone integrity in middle-aged obese female rats.

This study investigates the effects of a restricted diet (RD) on body composition and musculoskeletal health along with endocrines and molecular mechanism in established mature obese rats. Twenty female rats were fed with a high-fat diet (HFD) ad libitum for 4 months and then assigned to either HFD or RD group for another 4 months. Another 10 rats were on a low-fat diet for 8 months. Outcome measures included body composition, bone mineral density, microarchitecrure, and strength; serum leptin, adiponectin, insulin-like growth factor I, and liver glutathione peroxidase activity; and protein expression and spleen tumor necrosis factor α messenger RNA expression. We hypothesized that mature obese rats on a 35% energy restriction diet for 4 months would improve body composition but degrade microstructural and mechanical properties of long bones, and such changes in musculoskeletal integrity are related to the modulation of obesity-related endocrines and proinflammation. Relative to HFD, RD benefited body composition (decreased body weight and %fat mass and increased %fat-free mass); decreased insulin-like growth factor I and leptin; elevated adiponectin, glutathione peroxidase activity and protein expression and tumor necrosis factor α messenger RNA expression; and suppressed bone formation and increased bone resorption, resulting in decreased trabecular and cortical bone volume, bone mineral density, and bone strength. Relative to low-fat diet, RD had a similar effect on body composition and serum markers but increased bone turnover rate and decreased bone mineral density and strength. Our data suggest that long-term RD has a negative impact on bone remodeling in obese female rats, probably through modification of endocrines and elevation of proinflammation.

Shen CL, Zhu W, Gao W, Wang S…
Nutr Res Aug 2013
PMID: 23890357