Tag Archives: animal

Manganese Builds Bone in Rats

Abstract

Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats.

The effect of manganese (Mn) supplementation on bone mineral density (BMD) and bone metabolism parameters was determined in ovariectomized Sprague-Dawley rats. Rats were divided into four groups (OVX, OVX+Mn, sham, sham+Mn) and fed with different intake levels of manganese (adequate 0.001% Mn, supplementation 0.01% Mn) for 12 weeks. BMD of the lumbar vertebrae, femur, and tibia were significantly lowered in ovariectomized rats compared to the sham group. In addition, BMD of the lumbar vertebrae was significantly increased by Mn supplementation in the sham groups. Serum C-telopeptide cross-links of type I collagen (CTx), bone resorption biomarker, alkaline phosphatase (ALP), and bone formation biomarkers were not significantly different among the four groups. However, serum osteocalcin, a more sensitive bone formation biomarker, was significantly increased by Mn supplementation. To summarize, Mn supplementation resulted in increased BMD and bone formation. Based on our findings, more research is needed to better understand the effects of manganese supplementation on bone formation and resorption.

Bae YJ, Kim MH
Biol Trace Elem Res Jul 2008
PMID: 18330520

Strontium Citrate Raises Bone Strontium Levels More Than Strontium Ranelate in Rats

Abstract

Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate.

Strontium ranelate is an approved pharmacotherapy for osteoporosis in Europe and Australia, but not in Canada or the United States. Strontium citrate, an alternative strontium salt, however, is available for purchase over-the-counter as a nutritional supplement. The effects of strontium citrate on bone are largely unknown. The study’s objectives were 1) to quantify bone strontium accumulation in female Sprague Dawley rats administered strontium citrate (N=7) and compare these levels to rats administered strontium ranelate (N=6) and vehicle (N=6) over 8 weeks, and 2) to verify an in vivo X-ray fluorescence spectroscopy (XRF) system for measurement of bone strontium in the rat. Daily doses of strontium citrate and strontium ranelate were determined with the intention to achieve equivalent amounts of elemental strontium. However, post-hoc analyses of each strontium compound conducted using energy dispersive spectrometry microanalysis revealed a higher elemental strontium concentration in strontium citrate than strontium ranelate. Bone strontium levels were measured at baseline and 8 weeks follow-up using a unique in vivo XRF technique previously used in humans. XRF measurements were validated against ex vivo measurements of bone strontium using inductively coupled plasma mass spectrometry. Weight gain in rats in all three groups was equivalent over the study duration. A two-way ANOVA was conducted to compare bone strontium levels amongst the three groups. Bone strontium levels in rats administered strontium citrate were significantly greater (p<0.05) than rats administered strontium ranelate and vehicle. ANCOVA analyses were performed with Sr dose as a covariate to account for differences in strontium dosing. The ANCOVA revealed differences in bone strontium levels between the strontium groups were not significant, but that bone strontium levels were still very significantly greater than vehicle.

Wohl GR, Chettle DR, Pejović-Milić A, Druchok C…
Bone Jan 2013
PMID: 22995463

Calorie Restriction Reduces Osteonecrosis in Rats

Abstract

Dietary restriction reduces the prevalence of osteonecrosis of the caput femoris in spontaneously hypertensive rats.

We investigated the effects of dietary restriction (DR), an experimental intervention known to suppress several strain-specific diseases, on the prevalence of osteonecrosis of the caput femoris in spontaneously hypertensive rats (SHR). At 6 weeks of age, the food intake of DR rats was restricted to 65% of the mean intake of control rats fed ad libitum (AL). Acute osteonecrosis of the caput femoris without reparative tissue response (RTR) was observed at 10 and 15 weeks in both DR and AL groups; no such acute lesion was seen at 20 and 30 weeks. The prevalence of osteonecrosis, osteonecrosis with/without reparative tissue response was significantly reduced in DR rats at 15 and 20 weeks, but not at 10 weeks. DR reduced the body weight by 30% and the length of the femur by 10%. Ossification of the caput femoris, known to be delayed in AL rats compared with Wistar Kyoto rats, was also restored by DR. Our results showed that dietary restriction reduced the prevalence of osteonecrosis and modulated the mechanical factors involved in the lesion. They also indicate that utilization of dietary restriction is a useful research tool for investigating the underlying mechanisms of osteonecrosis of the caput femoris in SHR.

Tomita M, Shimokawa I, Maeda H, Higami Y…
Calcif. Tissue Int. Mar 1999
PMID: 10024387

Calorie Restriction Beneficial in Rats with High Oxidative Stress

Abstract

Effects of dietary restriction on total body, femoral, and vertebral bone in SENCAR, C57BL/6, and DBA/2 mice.

Dietary restriction (DR) increases the life span and retards aging, in part, by limiting free radical generation and oxidative damage. DR also reduces body mass, a major determinant of bone mass across the life span. We tested the hypothesis that DR has its most beneficial effects on bone in mouse strains with high free radical generation (sensitive to carcinogenesis [SENCAR] > C57 > DBA) versus the hypothesis that bone mass at weight-bearing sites is determined by body mass in DR and ad libitum (AL)-fed mice. Male mice of each strain were killed at 10 weeks of age (t(0)) or randomized to an AL-fed or 30% DR feeding regimen for 6 months. Food consumption by AL-fed mice was measured daily, and DR mice received 70% of the amount of food consumed by their respective AL-fed mice the previous day. Body fat (%) and bone mineral density (BMD) and content (BMC) were determined by PIXImus densitometry. There were strain-dependent effects on body mass, crown-to-rump length, percent body fat, and total body, femoral, and vertebral BMD and BMC under all conditions. SENCAR mice were heavier, longer, had larger bones, and generally exhibited higher total body, femoral, and vertebral BMC and BMD than C57 and DBA mice. DR had beneficial effects on BMD and BMC in the vertebrae of the SENCAR mouse model of high free radical generation and in the obese, diabetes-prone C57 mouse model of high end-stage protein glycation. DR DBA and SENCAR mice had lower femoral BMDs and BMCs than their respective AL-fed controls. Regression analysis confirmed linear relationships between total and lean body mass and total body and femoral BMDs and BMCs, suggesting that physiologic adaptation to a lower body mass accounts for the lower femoral bone mineral values observed in DR versus AL-fed mice. Thus, both hypotheses are, at least, partially valid. DR is beneficial in the trabeculae-rich vertebrae of animal models of high oxidant stress, and total/lean body mass determines BMD and BMC in the weight-bearing femur in DR and AL-fed mice.

Brochmann EJ, Duarte ME, Zaidi HA, Murray SS
Metab. Clin. Exp. Oct 2003
PMID: 14564677

Calcium + Magnesium From Seaweed Improves Bone More than Inorganic Calcium + Magnesium in Rats

Abstract

Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

Bae YJ, Bu SY, Kim JY, Yeon JY…
Biol Trace Elem Res Dec 2011
PMID: 21584658

Magnesium Deficiency Decreases Bone Density and Strength of Implants in Rats

Abstract

Effect of severe dietary magnesium deficiency on systemic bone density and removal torque of osseointegrated implants.

This study evaluated the effect of severe magnesium (Mg) dietary deficiency on systemic bone density and biomechanical resistance of bone tissue to the removal torque of osseointegrated implants.
The sample consisted of 45 rats; each received a titanium implant in their tibial metaphysis. After 60 days, the animals were divided into three groups (n = 15) according to their dietary Mg: the control group received the recommended content of Mg, group Mg1 received a 75% reduction in dietary Mg content, and group Mg2 was fed a diet with a 90% reduction in Mg content. Animals were sacrificed 150 days after implant placement. Serum concentrations of Mg were measured and the effect of Mg deficiency on systemic bone density was evaluated by densitometry of the lumbar vertebrae and femur. Biomechanical characteristics were measured by resistance of the bone tissue to removal of the implants. Results: Lower Mg serum concentrations were found for the Mg1 and Mg2 groups; however, densitometric analysis and torque evaluations showed a statistically significant difference only in the Mg2 group (P < .05). There was a statistically significant difference in removal torque between the Mg2 group and the control group.
This study showed that a severe deficiency of Mg decreased the systemic bone density and removal torque of osseointegrated implants.

Del Barrio RA, Giro G, Belluci MM, Pereira RM…
Int J Oral Maxillofac Implants
PMID: 21197488

Calcium Does Not Prevent Decreased Bone Formation From Magnesium Deficiency in Rats

Abstract

Effects of a high-calcium diet on serum insulin-like growth factor-1 levels in magnesium-deficient rats.

In order to clarify the effects of a high-calcium (Ca) diet on bone formation in magnesium (Mg)-deficient rats, this study focused on the effects of a high-Ca diet on serum insulin-like growth factor-1 (IGF-1) levels. Male rats were randomized by weight into four groups, and fed one of four experimental diets containing two different Mg concentrations (0.05% (normal-Mg) or Mg-free (Mg-deficient)), and two different Ca concentrations (0.5% (normal-Ca) or 1.0% (high-Ca)) for 14 days. Serum concentrations of osteocalcin and IGF-1 were significantly lower in rats fed the Mg-deficient diet than in rats fed the normal-Mg diet. On the other hand, dietary Ca concentration had no significant influence on serum concentrations of osteocalcin and IGF-1. This study suggested that: 1) a high-Ca diet has no preventive effects on the decreased bone formation seen in Mg-deficient rats; and 2) a high-Ca diet does not enhance serum IGF-1 levels in Mg-deficient rats. Moreover, unchanged serum IGF-1 concentrations may contribute to the decreased bone formation seen in Mg-deficient rats receiving a high-Ca diet.

Matsuzaki H, Kajita Y, Miwa M
Magnes Res
PMID: 22995212

Magnesium in Bone is Higher When Taken More Frequently in Rats

Abstract

The frequency of magnesium consumption directly influences its serum concentration and the amount of elutable bone magnesium in rats.

We investigated the influence of Mg feeding frequency on the variation in serum Mg concentration and tissue Mg levels in Mg-deficient rats. Sprague-Dawley rats, which had been fed a Mg-deficient diet for 14 d, were divided into 3 groups that were kept on 3 diets differing in their Mg content. The rats were fed 0.5-fold (Mg250 group), 1-fold (Mg500 group), or 1.5-fold (Mg750 group) the amounts of recommended Mg in their standard AIN-93G diet (Mg: 478 mg/kg diet) during the recovery period (12 d). The Mg500 and Mg750 groups were intermittently fed (Mg500, every 2 d; Mg750, every 3 d) so that their total intake of Mg during the recovery period could equal the Mg intake of the Mg250 group. The serum Mg concentrations increased in the 3 groups after feeding with a Mg-containing diet. However, serum Mg levels were only maintained within the normal range in the Mg250 group. After feeding on the Mg-deficient diet, in the intermittently fed groups, serum Mg concentrations decreased. Urinary Mg excretion was higher and Mg retention was lower in the Mg500 and Mg750 groups than in the Mg250 group. Moreover, bone Mg, especially elutable bone Mg, was lower in the Mg500 and Mg750 groups than in the Mg250 group. The elutable fraction of bone Mg correlated to the coefficient of variation of serum Mg concentration. In conclusion, for the maintenance of serum Mg concentration, it is important to increase the amount of elutable bone Mg by frequent Mg consumption.

Nakaya Y, Uehara M, Katsumata S, Suzuki K…
Magnes Res Mar 2010
PMID: 20228011 | Free Full Text


Note the rats that ate 250mg/kg Magnesium had higher bone Magnesium than the rats fed just as much Magnesium but less often, every 2 or 3 days.

Magnesium Deficiency Reduces Bone Mass in Rats

Abstract

Effects of magnesium intake deficiency on bone metabolism and bone tissue around osseointegrated implants.

This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration.
For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received. Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing.
Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P ≤ 0.05). The Mg [deficient] group also presented a loss of systemic bone mass, decreased cortical bone thickness and lower values of removal torque of the implants (P ≤ 0.01).
The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.

Belluci MM, Giro G, del Barrio RA, Pereira RM…
Clin Oral Implants Res Jul 2011
PMID: 21143536

Magnesium Deficiency Increases Resorption and Osteoclasts While Decreasing Bone Formation and Osteoblasts

Abstract

Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption.

Magnesium (Mg) intake has been linked to bone mass and/or rate of bone loss in humans. Experimental Mg deficiency in animal models has resulted in impaired bone growth, osteopenia, and increased skeletal fragility. In order to assess changes in bone and mineral homeostasis that may be responsible, we induced dietary Mg deficiency in adult Simonsen albino rats for 16 weeks. Rats were fed either a low Mg diet (0.002 percent) or a normal control Mg diet (0.063 percent). Blood was obtained at baseline, 4 weeks, 8 weeks, 12 weeks and 16 weeks in both groups for serum Mg, calcium, PTH, and 1.25(OH)2-vitamin D determinations. Femora were harvested at 4 weeks and 16 weeks for mineral analysis and histomorphometry. Serum Mg fell in the Mg depleted group to 0.6 mg/dl (mean) by 16 weeks (controls = 2.0 mg/dl). The serum calcium (Ca) concentration was higher in the Mg depleted animals at 16 weeks, 10.8 mg/dl (controls = 8.9 mg/dl). Serum PTH concentration fell progressively in the Mg deficient rats to 30 pg/ml by week 16 (control = 96 pg/ml). Serum concentration of 1.25(OH)2-vitamin D also fell progressively in the Mg deficient animals by 16 weeks to 14 pg/ml (control = 30 pg/ml). While the percent ash weights of Ca and phosphorus in the femur were not different at any time point, the percent ash weight of Mg progressively fell to 0.54 percent vs control (0.74 percent) by 16 weeks. The percent ash weight of potassium also fell progressively in the Mg deficient group to approximately 30 percent of control by 16 weeks. Histomorphometric analyses showed a significant drop in trabecular bone volume in Mg deficient animals by 16 weeks (percent BV/TV = 13.2 percent vs 17.3 percent in controls). Evaluation of the endosteal bone surface features showed significantly greater bone resorption in the Mg depleted group as reflected in increased number of tartrate-resistant positive osteoclasts/mm bone surface (7.8 vs 4.0 in controls) and an elevated percent of bone surface occupied by osteoclasts (percent OcS/BS = 12.2 percent vs 6.7 percent in controls. This increased resorption occurred in the presence of an inappropriate lowered bone forming surface relative to controls; a decreased number of osteoblasts per mm bone surface (0.23 vs 0.94 in control) and a decrease in percent trabecular surface lined by osteoid (percent OS/BS = 0.41 vs 2.27 percent in controls) were also noted. Our findings demonstrate a Mg-deficiency induced uncoupling of bone formation and bone resorption resulting in a loss of bone mass. While the fall in PTH and/or 1.25(OH)2-D may explain a decrease in osteoblast activity, the mechanism for increased osteoclast activity is unclear. These data suggest that Mg deficiency may be a risk factor for osteoporosis.

Rude RK, Kirchen ME, Gruber HE, Meyer MH…
Magnes Res Dec 1999
PMID: 10612083