Tag Archives: animal

Exercise Limits Effects of Excessive Alcohol on Bone in Rats

Abstract

Regular exercise limits alcohol effects on trabecular, cortical thickness and porosity, and osteocyte apoptosis in the rat.

Excessive alcohol consumption is known to be a cause of secondary osteoporosis whereas physical activity is recommended in prevention of osteoporosis. This study was designed to analyze the effects of physical exercise on bone parameters in chronic alcohol-fed rats.
Forty-eight male Wistar rats were divided in four groups: Control (C), Alcohol (A), Exercise (E) and Alcohol+Exercise (AE). A and AE groups drank a solution composed of ethanol and water (35% volume/volume for 17 weeks). E and AE groups were submitted to treadmill training for 14 weeks (60 min/day, 5 times/week). Bone mineral density (BMD) was assessed by DXA, the trabecular and cortical microarchitectural parameters by microCT and serum osteocalcin, NTx and leptin concentrations by ELISA assays. Bone mechanical parameters were evaluated through mechanical testing. Osteocyte apoptosis was analyzed with cleaved caspase-3 immunostaining.
Alcohol-fed rats had significantly lower body weight (-28%), fat (-46%) and lean mass (-25%) compared to controls. BMD (-8%), trabecular (-12%) and cortical thickness (-27%) were significantly lower with alcohol whereas porosity (+38%) and pore number (+42%) were higher. Exercise combined with alcohol prevented lower Tb.Th (+20%), Ct.Th (+30%), stress (+26%) and higher Ct.Po (-24%) and osteocyte apoptosis (-91%) compared to A. However, WB BMD (-4%) and femur BMD were still lower in AE versus C.
Regular physical activity has beneficial effects on some microarchitectural parameters in alcohol-fed rats. However, regular treadmill exercise does not compensate for the effects of heavy chronic alcohol consumption on whole body bone density.

Maurel DB, Boisseau N, Pallu S, Rochefort GY…
Joint Bone Spine Oct 2013
PMID: 23380443

Silicon Antagonizes Calcium and Magnesium in Animals

Abstract

Effects of high levels of dietary silicon on bone development of growing rats and turkeys fed semi-purified diets.

Two experiments were conducted using a completely randomized design to study the effects of high levels of silicon (Si) supplementation on bone development, structure, and strength in growing rats and turkeys. Rats were supplemented at two dietary Si levels: 0 and 500 ppm; and the turkeys were supplemented at four dietary Si levels: 0, 135, 270, and 540 ppm in semi-purified diets of dextrose-albumin for rats and dextrose-casein for turkeys. The experiments lasted 8 and 4 weeks for the rats and turkeys, respectively. Physical, mechanical, and chemical parameters of bones were measured. All the physical and mechanical measures of bone size and strength were not different (P > 0.05) between treatments in rats and turkeys except the moment of inertia, which was lower (P < 0.01) in rats on the 500 ppm Si level of supplementation. There were small but consistent reductions in structural and strength parameters with Si supplementation which were not wholly due to differences in bodyweights of the rats and turkeys. Although bone mineral composition was not affected (P > 0.05) by Si supplementation, plasma magnesium (P = 0.08) in rats and plasma calcium (P < 0.05) in turkeys were reduced by high levels of Si supplementation. The antagonistic relations of high Si levels with calcium and magnesium were deemed to be the mechanisms through which high Si imposes its deleterious effects on bone size and strength.

Kayongo-Male H, Julson JL
Biol Trace Elem Res 2008
PMID: 18418557

Arginine May Increase Bone Formation by Increasing Silicon Absorption in Rats

Abstract

Dietary silicon and arginine affect mineral element composition of rat femur and vertebra.

Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2 x 2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 microg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 microg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role.

Seaborn CD, Nielsen FH
Biol Trace Elem Res Dec 2002
PMID: 12462747


Arginine is an essential amino acid for the rat. In animals L-arginine apparently induces growth hormone and insulin-like growth factor-1 responses and stimulates nitric oxide synthase. Growth hormone and insulin-like growth factor-1 are important mediators of bone turnover and osteoblastic bone formation, whereas nitric oxide is a potent inhibitor of osteoclastic bone resorption (1). By affecting these physiological regulators of bone remodeling, L-arginine could potentially increase bone formation over bone resorption and, consequently, increase bone mass.

There is experimental evidence suggesting that arginine supplementation promotes bone formation. A mixture of lactose, L-arginine, and L-lysine improved fracture healing of rabbits subjected to an osteotomy of the left fibula (2). These authors suggested that arginine was involved not only in the increase of intestinal calcium absorption but also in collagen synthesis. Although there is evidence that L-arginine affects bone maintenance minimal attention has been given to the possible interaction between arginine and other macro and/or trace minerals, including silicon associated with mineralized bone formation and remodeling.

Silicon can affect bone formation and remodeling (3). The basic amino acids such as arginine can increase silicon absorption (4). Therefore the effects of silicon on bone mineralization may be modified by the amount of arginine in the diet….

Taurine + Arginine Benefit Bone in Rats

Abstract

Effect of dietary taurine and arginine supplementation on bone mineral density in growing female rats.

The purpose of this study was to determine the effect of arginine or -taurine alone and taurine plus arginine on bone mineral density (BMD) and markers of bone formation and bone resorption in growing female rats. Forty female SD rats (75 ± 5 g) were randomly divided into four groups (control, taurine, arginine, taurine + arginine group) and treatment lasted for 9 weeks. All rats were fed on a diet and deionized water. BMD and bone mineral content (BMC) were measured using PIXImus (GE Lunar Co, Wisconsin, USA) in spine and femur. The serum and urine concentrations of calcium and phosphorus were determined. Bone formation was measured by serum osteocalcin and alkaline phosphatase concentrations, and the bone resorption rate was measured by deoxypyridinoline cross-links. Femur BMD was significantly increased in the group with taurine supplementation and femur BMC/weight was significantly increased in the group with arginine + taurine supplementation. Rats fed an arginine or taurine supplemental diet increased femur BMD or femur BMC, but a taurine + arginine-supplemented diet does not have a better effect than arginine or taurine alone in the spine BMD. The femur BMC, expressed per body weight, was higher in arginine + taurine group than in the taurine or arginine group. The results of this study suggest that taurine + arginine supplementation may be beneficial on femur BMC in growing female rats. Additional work is needed to clarify the interactive effects between the taurine and arginine to determine whether dietary intakes of arginine and taurine affect bone quality in growing rats.

Choi MJ, Chang KJ
Adv. Exp. Med. Biol. 2013
PMID: 23392895

Taurine Leads to Bone Anabolic Action in Mouse Cells

Abstract

[Anti-osteopenic effect of taurine: possible involvement of activated MEK-ERK-Cbfa1 signaling].

Previously we first noted that taurine (TR) has anti-osteopenic effect on low Ca diet-induced osteopenia in rats (1). Employing osteoblastic MC3T3-E1 cells, the mechanism of the anti-osteopenic effect was explored in vitro. TR (1 mM) was found to promote mineralization of extracellular matrices, without affecting alkaline phosphataase activity. Gel shift assay using 32P-labeled OSE2 (osteoblast-specific cis-element 2: the consensus sequence for Cbfa1, refer to 2) indicated that TR (1 mM) increased the nuclear localization of Cbfa1, just as TPH (1-34) (3,4) and bisphosphonates did (5). In addition, TR was found to stimulate ERK phosphorylation. PD98059, a MEK inhibitor, suppressed effects of TR on both Cbfa1 transactivation and ERK activation. The results strongly suggest that TR first activates intracellular MEK-ERK-Cbfa1 signaling system thereby promoting mineralization and finally leading to its bone anabolic action.

Yasutomi C, Nakamuta H, Fujita T, Takenaga T…
Nippon Yakurigaku Zasshi Nov 2002
PMID: 12491800

Taurine Increases Markers of Bone Growth in Human and Mouse Osteoblasts

Abstract

Taurine transporter is expressed in osteoblasts.

Taurine influences bone metabolism and is taken up by cells via a specific transport system, the taurine transporter (TAUT). We report a link between taurine and bone homeostasis by demonstrating transcription and translation of TAUT in bone-forming cells. TAUT was expressed in human primary osteoblasts, the human osteosarcoma osteoblast-like cell line MG63, and the mouse osteoblastic cell line MC3T3-E1. Immunostaining with polyclonal antibodies also demonstrated the presence of TAUT in both human and murine osteoblasts. TAUT mRNA expression and [(3)H]taurine uptake increased during differentiation of MG63 cells in culture. Supplementation of culture medium with taurine enhanced alkaline phosphatase activity and osteocalcin secretion. The regulation and detailed function of taurine and TAUT in bone remain unclear, but our findings suggest a functional role for them in bone homeostasis.

Yuan LQ, Xie H, Luo XH, Wu XP…
Amino Acids Sep 2006
PMID: 16729199

Taurine Induces Connective Tissue Growth Factor in Mouse Osteoblasts

Abstract

Taurine promotes connective tissue growth factor (CTGF) expression in osteoblasts through the ERK signal pathway.

Taurine is found in bone tissue, but its function in skeletal tissue is not fully understood. The present study was undertaken to investigate regulation of gene expression of connective tissue growth factor (CTGF), and the roles of mitogen-activated protein kinases (MAPKs) in murine osteoblast MC3T3-E1 cells treated with taurine. Western blot analysis showed taurine stimulated CTGF protein secretion in a dose- and time-dependent manner. Taurine induced activation of extracellular signal-regulated kinase (ERK), but not p38 and c-jun N-terminal Kinase (JNK), in osteoblasts. Furthermore, pretreatment of osteoblasts with the ERK inhibitor PD98059 abolished the taurine-induced CTGF production. These data indicate that taurine induces CTGF secretion in MC3T3-E1 cells mediated by the ERK pathway, and suggest that osteoblasts are direct targets of taurine.

Yuan LQ, Lu Y, Luo XH, Xie H…
Amino Acids 2007
PMID: 16937320

Taurine Increases Bone Density in Rats

Abstract

Effect of taurine feeding on bone mineral density and bone markers in rats.

The purpose of this study was to investigate the effect of dietary taurine supplementation on bone mineral density (BMD) and bone mineral content (BMC) in rats. Twenty Sprague-Dawley male rats (body weight 200 ± 10 g) were divided into two groups, control and taurine group (2% taurine-supplemented diet). All rats were fed on experimental diet and deionized water and libitum for 6 weeks. Serum alkaline phosphatase (ALP) activity, osteocalcin, PTH, and urinary deoxypyridinoline cross-links value were measured as markers of bone formation and resorption. BMD and BMC were measured using PIXImus (GE Lunar Co., Wisconsin) in spine and femur. The effect of diet on ALP, osteocalcine, and PTH was not significant. There were no significant differences in ALP, osteocalcine, and PTH concentration. Urinary calcium excretion was lower in taurine group than in control group. Femur BMC/weight of taurine group was significantly higher than control group. The results of this study showed the possible role of taurine in bone metabolism in male rats.

Choi MJ, Seo JN
Adv. Exp. Med. Biol. 2013
PMID: 23392870

Taurine Inhibits Osteoblast Apoptosis in Mouse Cells

Abstract

Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway.

Taurine has positive effects on bone metabolism. However, the effects of taurine on osteoblast apoptosis in vitro have not been reported. The aim of this study was to investigate the activity of taurine on apoptosis of mouse osteoblastic MC3T3-E1 cells. The data showed that 1, 5, 10, or 20 mM taurine resulted in 16.7, 34.2, 66.9, or 63.75% reduction of MC3T3-E1 cell apoptosis induced by the serum deprivation (serum-free α-MEM), respectively. Taurine (1, 5, or 10 mM) also reduced cytochrome c release and inhibited activation of caspase-3 and -9, which were measured using fluorogenic substrates for caspase-3/caspase-9, in serum-deprived MC3T3-E1 cells. Furthermore, taurine (10 mM) induced extracellular signal-regulated kinase (ERK) phosphorylation in MC3T3-E1 cells. Knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 (10 μM) blocked the activation of ERK induced by taurine (10 mM) and abolished the anti-apoptotic effect of taurine (10 mM) in MC3T3-E1 cells. The present results demonstrate for the first time that taurine inhibits serum deprivation-induced osteoblast apoptosis via the TAUT/ERK signaling pathway.

Zhang LY, Zhou YY, Chen F, Wang B…
Braz. J. Med. Biol. Res. Jul 2011
PMID: 21710101 | Free Full Text

Taurine Increases Bone Density in Rats

Abstract

The effects of dietary taurine supplementation on bone mineral density in ovariectomized rats.

This study was performed to evaluate the effect of a diet rich in taurine (2.0 g/100 g) on bone metabolism in ovariectomized (OVX) rats. All rats were fed deionized water during the experimental period. Bone mineral density (BMD) and bone mineral content (BMC) of spine and femur were measured. Serum and urinary calcium and phosphorus content were determined. The levels serum osteocalcin and alkaline phosphatase (ALP) were used to assess bone formation. The rate of bone resorption was measured by the deoxypyridinoline (DPD) crosslink immunoassay and corrected for creatinine. Urinary Ca and P excretion, serum osteocalcin content, and the crosslink value were not significantly different between the Sham groups. The taurine supplemented, Sham group had higher spinal and femur BMC than those of the untreated control group, but the difference was not statistically significant. However, the taurine supplemented, Sham group had significantly higher spine and femur BMC per weight than those of the untreated control group. Within the OVX group, the taurine supplemented group had a lower crosslink value than the casein group. The taurine supplemented, OVX group had higher femur bone mineral content per weight than those of the control, OVX group, but the difference was not statistically significant. A study examining the long-term effect of taurine supplementation in humans is warranted.

Choi MJ, DiMarco NM
Adv. Exp. Med. Biol. 2009
PMID: 19239165