Tag Archives: abstract

Horny Goat Weed Inhibits Osteoclasts In Vitro

Abstract

Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NF-kappaB signaling pathways.

Osteoclasts are specialized bone-resorbing cells derived from multipotent myeloid progenitor cells. They play a crucial homeostatic role in skeletal modeling and remodeling and destroy bone in many pathologic conditions. Receptor activator of NF-kappaB ligand (RANKL) is essential to osteoclastogenesis. In this study, we investigated the effects of Ikarisoside A, isolated from Epimedium koreanum (Berberidaceae), on osteoclastogenesis in RANKL-treated murine monocyte/macrophage RAW 264.7 cells. The results indicate that Ikarisoside A is a potent inhibitor of osteoclastogenesis in RANKL-stimulated RAW 264.7 cells as well as in bone marrow-derived macrophages. The inhibitory effect of Ikarisoside A resulted in decrease of osteoclast-specific genes like matrix metalloproteinase 9 (MMP9), tartrate-resistant acid phosphatase (TRAP), receptor activator of NF-kappaB (RANK), and cathepsin K. Moreover, Ikarisoside A blocked the resorbing capacity of RAW 264.7 cells on calcium phosphate-coated plates. Ikarisoside A also has inhibitory effects on the RANKL-mediated activation of NF-kappaB, JNK, and Akt. Finally, Ikarisoside A clearly decreased the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1) as well as the transcriptional activity of NFATc1, the master regulator of osteoclast differentiation. The data indicate that Ikarisoside A has potential for use in treatment of diseases involving abnormal bone lysis such as osteoporosis, rheumatoid arthritis, and periodontal bone erosion.

Choi HJ, Park YR, Nepal M, Choi BY…
Eur. J. Pharmacol. Jun 2010
PMID: 20353769

Vitamin K2 (MK4) Inhibits Bone Resorption Through Inhibition of PGE2 In Vitro

Abstract

Menatetrenone inhibits bone resorption partly through inhibition of PGE2 synthesis in vitro.

We studied the effect of menatetrenone, a vitamin K2 homolog, on bone resorption stimulated by interleukin-1 alpha (IL-1 alpha), prostaglandin E2 (PGE2), parathyroid hormone (PTH), and 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Bone-resorbing activity was assessed by measurement of calcium and hydroxyproline in the media and calvariae. IL-1 alpha (0.1-100 U/ml), 1,25-(OH)2D3 (10(-10)-10(-7) M), PGE2 (10(-9)-10(-6) M), and PTH (3 x 10(-8)-3 x 10(-7) M) dose dependently increased the levels of calcium and hydroxyproline in the medium. Indomethacin (10(-6) M) completely inhibited bone resorption induced by IL-1 alpha and partially inhibited bone resorption induced by 1,25-(OH)2D3. However, indomethacin did not affect the action of PGE2 or PTH. Menatetrenone (3 x 10(-6)-3 x 10(-5) M) inhibited the bone resorption induced by IL-1 alpha (2 U/ml), PGE2 (10(-7) M), PTH (3 x 10(-7) M), and 1,25-(OH)2D3 (3 x 10(-10) M) in a dose-dependent manner. Menatetrenone also inhibited the PGE2 production stimulated by IL-1 alpha. These results indicate that menatetrenone may inhibit bone resorption through at least two different mechanisms; one possibly is an inhibitory effect on prostaglandin production.

Hara K, Akiyama Y, Tajima T, Shiraki M
J. Bone Miner. Res. May 1993
PMID: 8511981

PGE2 Stimulates Bone Formation and Resorption In Mouse Cells

Abstract

Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase.

Prostaglandin E2 (PGE2) is an important local regulator in bone. The present study was performed to investigate the effect of PGE2 on osteoclast-like cell formation and bone-resorbing activity of mature osteoclasts in the presence or absence of osteoblasts, PGE2 (10(-8) to 10(-6) M) significantly stimulated osteoclast-like cell formation in osteoblast-containing mouse bone cell cultures, although it did not affect osteoclast-like cell formation from hemopoietic blast cells supported by granulocyte-macrophage colony-stimulating factor in osteoblast-free mouse spleen cell cultures. The conditioned medium from osteoblastic UMR-106 cells pretreated with PGE2 (10(-8) and 10(-6) M) significantly stimulated osteoclast-like cell formation from hemopoietic blast cells. PGE2 also significantly stimulated the bone-resorbing activity of mature osteoclasts in osteoblast-containing mouse bone cell cultures. In contrast, PGE2 significantly inhibited the bone-resorbing activity and osteopontin mRNA expression in isolated rabbit osteoclasts. Rp-cAMPS, a direct protein kinase (PKA) antagonist, significantly inhibited PGE2-stimulated osteoclast-like cell formation and the bone-resorbing activity of mature osteoclasts, although protein kinase C inhibitors, dantrolene (an inhibitor of calcium release from the intracellular calcium pool) and voltage-dependent calcium channel blockers did not affect PGE2-stimulated osteoclast-like cell formation. In conclusion, PGE2 stimulated osteoclast-like cell formation and bone-resorbing activity in mouse bone cell cultures presumably through osteoblasts. The activation of PKA is linked to PGE2-stimulated osteoclast-like cell formation and bone-resorbing activity.

Kaji H, Sugimoto T, Kanatani M, Fukase M…
J. Bone Miner. Res. Jan 1996
PMID: 8770698

PGE2 Increases Bone Formation and Mass in Aging Rats

Abstract

Systemic prostaglandin E2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro.

Prostaglandin E(2) (PGE(2)) has been shown to exert a bone anabolic effect in young and adult rats. In this study we tested whether it possesses a similar effect on bone formation and bone mass in aging rats. Fifteen-month-old rats were injected daily with either PGE(2) at 5 mg/kg or vehicle for 14 days. PGE(2) treatment stimulated the rate of cancellous bone formation (a approximately 5.5-fold increase in bone formation rate), measured by the incorporation of calcein into bone-forming surfaces at the tibial proximal metaphysis. This effect resulted in increased cancellous bone area (+54%) at the same site. Since PGE(2) treatment resulted in a much higher proportion of bone surface undergoing bone formation and thus lined with osteoblasts, we tested the hypothesis that PGE(2) stimulates osteoblast differentiation from bone marrow precursor cells both in vivo and in vitro. We found that ex vivo cultures of bone marrow stromal cells from rats injected for 2 weeks with PGE(2) at 5 mg/kg per day yielded more ( approximately 4-fold) mineralized nodules and exhibited a greater (by 30-40%) alkaline phosphatase activity compared with cultures from vehicle-injected rats, attesting to a stimulation of osteoblastic differentiation by PGE(2). We also compared the osteogenic capacity of bone marrow from aging (15-month-old) versus young (5-week-old) rats and its regulation by PGE(2) in vitro. Bone marrow stromal cell cultures from aging rats exhibited a greatly diminished osteogenic capacity, reflected in reduced nodule formation ( approximately 6% of young animals) and lower alkaline phosphatase activity ( approximately 60% of young animals). However, these parameters could be stimulated in both groups of animals by incubation with 10-100 nM PGE(2). The magnitude of this stimulation was greater in cultures from aging rats (+550% vs +70% in nodule formation of aging compared with young rats). In conclusion, we demonstrate here that PGE(2) exerts a bone anabolic effect in aging rats, similar to the effect we and others have reported in young, growing rats. The PGE(2)-stimulated bone formation, which augments bone mass, most likely results from recruitment of osteoblasts from their bone marrow stromal precursors.

Keila S, Kelner A, Weinreb M
J. Endocrinol. Jan 2001
PMID: 11139777 | Free Full Text

Vitamin K Intake Not Associated with Fracture in Chinese Men and Women

Abstract

No association between dietary vitamin K intake and fracture risk in chinese community-dwelling older men and women: a prospective study.

Data on the association between dietary vitamin K intake and fracture risk are limited among Chinese. This study examined such an association in community-dwelling elderly in Hong Kong. We present data from 2,944 subjects (1,605 men, 1,339 women) who participated in a prospective cohort study. Baseline dietary intakes of energy, protein, calcium, vitamin D, and vitamin K were assessed using a food-frequency questionnaire. Data on incident hip fracture and nonvertebral fracture during a median of 6.9 follow-up years were collected from a hospital database. Cox regression analyses were performed with adjustments for age, education attainment, smoking status, alcohol use, body mass index, hip bone mineral density, physical activity, use of calcium supplement, and energy-adjusted nutrient intakes. There were 29 (1.8 %) men and 19 (1.4 %) women with incident hip fractures and 97 (6.0 %) men and 88 (6.6 %) women with nonvertebral fractures. The median (interquartile range) of dietary vitamin K intake was 241.8 (157.5-360.8) and 238.9 (162.4-343.6) μg/day in men and women, respectively. Similar dietary vitamin K intakes were observed between subjects with hip or nonvertebral fractures and subjects without hip or nonvertebral fractures. In both men and women, dietary vitamin K intake was not associated with fracture risks at all measured sites in either crude or adjusted models. In Chinese community-dwelling elderly, hip or nonvertebral fracture risk was not associated with dietary vitamin K intake. The high dietary vitamin K intake of the studied group may have limited the ability to detect the association between vitamin K intake and fracture risk.

Chan R, Leung J, Woo J
Calcif. Tissue Int. May 2012
PMID: 22451220

Low Vitamin K May Increase Hip Fracture in Women

Abstract

Vitamin K intake and hip fractures in women: a prospective study.

Vitamin K mediates the gamma-carboxylation of glutamyl residues on several bone proteins, notably osteocalcin. High serum concentrations of undercarboxylated osteocalcin and low serum concentrations of vitamin K are associated with lower bone mineral density and increased risk of hip fracture. However, data are limited on the effects of dietary vitamin K. We investigated the hypothesis that high intakes of vitamin K are associated with a lower risk of hip fracture in women.
We conducted a prospective analysis within the Nurses’ Health Study cohort. Diet was assessed in 72327 women aged 38-63 y with a food-frequency questionnaire in 1984 (baseline). During the subsequent 10 y of follow-up, 270 hip fractures resulting from low or moderate trauma were reported.
Women in quintiles 2-5 of vitamin K intake had a significantly lower age-adjusted relative risk (RR: 0.70; 95% CI: 0.53, 0.93) of hip fracture than women in the lowest quintile (< 109 microg/d). Risk did not decrease between quintiles 2 and 5 and risk estimates were not altered when other risk factors for osteoporosis, including calcium and vitamin D intakes, were added to the models. Risk of hip fracture was also inversely associated with lettuce consumption (RR: 0.55; 95% CI: 0.40, 0.78) for one or more servings per day compared with one or fewer servings per week), the food that contributed the most to dietary vitamin K intakes.
Low intakes of vitamin K may increase the risk of hip fracture in women. The data support the suggestion for a reassessment of the vitamin K requirements that are based on bone health and blood coagulation.

Feskanich D, Weber P, Willett WC, Rockett H…
Am. J. Clin. Nutr. Jan 1999
PMID: 9925126 | Free Full Text

Review: Vitamin K Reviewed by European Vitamin K Experts

Abstract

Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health.

Vitamin K is well known for its role in the synthesis of a number of blood coagulation factors. During recent years vitamin K-dependent proteins were discovered to be of vital importance for bone and vascular health. Recommendations for dietary vitamin K intake have been made on the basis of the hepatic requirements for the synthesis of blood coagulation factors. Accumulating evidence suggests that the requirements for other functions than blood coagulation may be higher. This paper is the result of a closed workshop (Paris, November 2002) in which a number of European vitamin K experts reviewed the available data and formulated their standpoint with respect to recommended dietary vitamin K intake and the use of vitamin K-containing supplements.

Vermeer C, Shearer MJ, Zittermann A, Bolton-Smith C…
Eur J Nutr Dec 2004
PMID: 15309455 | Free Full Text


Accumulating evidence suggests that in many aspects arterial calcification mimics bone formation, which prompts interest in the effects of vitamin K on the vasculature. Previous population-based studies reported a significant reduction in aortic calcification with high vitamin K1 [62] and vitamin K2 intake [63], and a significant inverse correlation was found between vitamin K2 intake, and the incidence of both ischaemic heart disease and cardiovascular mortality [63]. Based on these findings the effect of treatment on arterial characteristics was monitored in the Maastricht osteostudy. These unpublished findings clearly demonstrated that supplementation with vitamin K1 can protect against vascular hardening and loss of arterial elasticity. High dose MK-4 also seems to have cholesterol lowering properties as shown in studies in rabbits [64] and humans [65].

[…]

Extremely high doses (45–90mg/day) of MK-4 have been used for the treatment of postmenopausal osteoporosis in Japan for several years [66, 67]. After the positive outcomes of the first clinical trials, the treatment is now used on a large scale; thus far, no adverse side-effects have been reported. A number of independent groups have claimed that this medication results in complete prevention of further bone loss in postmenopausal women, and in some women even a significant gain in BMD [68, 69]. The treatment was also reported to be successful in other groups at risk for bone loss such as haemodialysis patients and those treated with corticosteroids.

[…]

In considering the potential efficacy of pharmacological doses of MK-4 it should be noted that there is evidence for a secondary function of this analogue over and above its role in glutamate carboxylation. The available evidence (mainly from cell culture experiments) suggests that MK-4 (but not K1) may also be associated with production of interleukin-6, regulate the synthesis of PGE2 [83], or inhibit the mevalonate pathway in a comparable way to bisphosphonates [84], but at present only preliminary data exist.

[…]

Any risks associated with relatively high consumption of either K1 or K2 appear minimal, with intakes up to 1 mg/d K1 and 45 mg/d MK-4 often having been used without observed adverse events. Two possible exceptions exist. Firstly a potential problem relates to interference with oral anticoagulants. However, a systematic dose-response study among subjects on oral anticoagulant treatment demonstrated that the stability of anticoagulation was not significantly affected by vitamin K supplements at doses below 100 μg/day [14]. Secondly, preliminary studies have suggested that high vitamin K1 supplementation (i. e. above 1 mg/day) can contribute to periodontal disease via a bacterial mechanism on gingival tissue (S. Hodges, unpublished data).

 

 

PGE2 Stimulates Bone Resorption and Formation In Vitro

Abstract

PGE2 stimulates both resorption and formation of bone in vitro: differential responses of the periosteum and the endosteum in fetal rat long bone cultures.

The ability of PGE2 to stimulate bone resorption in vitro and in vivo is well established but the effects of this compound on bone formation are still controversial. Recent clinical reports have suggested that long-term infusion of PGE in infants with cyanotic heart diseases led to a stimulation of periosteal bone formation and to hyperostosis. In the present report, we describe the effects of PGE2 (10(-5) M) in bone organ cultures on bone resorption, measured by the release of 45Calcium and the number of osteoclasts in sections of cultured bones, and bone volume, by measuring separately medullary and cortical areas. PGE2 induced a marked increase in 45Ca release and in cortical and medullary osteoclast numbers over 4 days in vitro; despite this increase in bone resorption, cortical bone volume remained constant, indicating a parallel increase in bone resorption and formation at this site. Morphological and quantitative data demonstrated a higher extent of osteoblastic surface along the periosteum of PGE2-treated bones when compared with control cultures. Medullary bone volume, on the other hand, decreased sharply during the culture period, demonstrating a lack of parallel increase in bone formation at this site. It is concluded that, under these experimental conditions, prostaglandin E2 stimulated both resorption and formation along the periosteum and only bone resorption along the endosteum of the cultured bones. The overall effect of PGE2 on bone as a whole, however, was net bone loss.

Nefussi JR, Baron R
Anat. Rec. Jan 1985
PMID: 3985383

Phloretin Inhibits Osteoclasts In Vitro

Abstract

Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages.

Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity.
Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin.
These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis.

Kim JL, Kang MK, Gong JH, Park SH…
Mol Nutr Food Res Aug 2012
PMID: 22700286

Glabridin Inhibits Osteoclasts In Vitro

Abstract

The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells.

Osteoblastic bone formation and osteoclastic bone resorption are in balance to maintain a constant, homeostatically controlled amount of bone. Excessive bone resorption by osteoclasts is involved in the pathogenesis of bone-related disorders. In the present study, we evaluated the inhibitory effects of glabridin, a flavonoid purified from licorice root, on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and its molecular mechanisms in murine osteoclast progenitor RAW264.7 cells. Glabridin significantly inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, the formation of multinucleated osteoclasts and resorption-pit formation. In mechanistic studies of the anti-osteoclastogenic potential of glabridin, we found that glabridin inhibited RANKL-induced expression of c-Fos and subsequent expression of NFATc1, which is a master regulator of osteoclastogenesis. Interestingly, glabridin inhibited the RANKL-induced expression of signaling molecules (TRAF6, GAB2, ERK2, JNK1 and MKK7) and osteoclast survival-related signaling pathways such as c-Src, PI3K and Akt2. Glabridin also inhibited the bone resorptive activity of mature osteoclasts by inhibiting osteoclast-associated genes (cathepsin K, MMP-9, CAII, TCIRG1, OSTM1 and CLCN7). Taken together, our data suggest that glabridin holds great promise for use in preventing osteoclastogenesis by inhibiting RANKL-induced activation of signaling molecules and subsequent transcription factors in osteoclast precursors and these findings may be useful for evaluating treatment options in bone-destructive diseases.

Kim HS, Suh KS, Sul D, Kim BJ…
Int. J. Mol. Med. Feb 2012
PMID: 22038020