PQQ Inhibits Osteoclasts

Abstract

Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ).

The effect of pyrroloquinoline quinine (PQQ) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation was examined using RAW 264.7 macrophage-like cells. RANKL led to the formation of osteoclasts identified as tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in the culture of RAW 264.7 cells. However, PQQ inhibited the appearance of osteoclasts and prevented the decrease of F4/80 macrophage maturation marker on RANKL-stimulated cells, suggesting a preventive action of PQQ on RANKL-induced osteoclast differentiation. PQQ inhibited the activation of nuclear factor of activated T cells (NFATc1), a key transcription factor of osteoclastogenesis, in RANKL-stimulated cells. On the other hand, PQQ did not inhibit the signaling pathway from RANK/RANKL binding to NFATc1 activation, including NF-κB and mitogen-activated protein kinases (MAPKs). PQQ augmented the expression of type I interferon receptor (IFNAR) and enhanced the IFN-β-mediated janus kinase (JAK1) and signal transducer and activator of transcription (STAT1) expression. Moreover, PQQ reduced the expression level of c-Fos leading to the activation of NFATc1. Taken together, PQQ was suggested to prevent RANKL-induced osteoclast formation via the inactivation of NFATc1 by reduced c-Fos expression. The reduced c-Fos expression might be mediated by the enhanced IFN-β signaling due to augmented IFNAR expression.

Odkhuu E, Koide N, Haque A, Tsolmongyn B…
Immunol. Lett. Feb 2012
PMID: 22193059