Review: Fruits and Phytochemicals

Abstract

Fruits and dietary phytochemicals in bone protection.

Osteoporosis is a disease of bone characterized by loss of bone matrix and deterioration of bone microstructure that leads to an increased risk of fracture. Cross-sectional studies have shown a positive association between higher fruit intake and higher bone mineral density. In this review, we evaluated animal and cellular studies of dried plum and citrus and berry fruits and bioactive compounds including lycopene, phenolics, favonoids, resveratrol, phloridzin, and pectin derived from tomato, grapes, apples, and citrus fruits. In addition, human studies of dried plum and lycopene were reviewed. Animal studies strongly suggest that commonly consumed antioxidant-rich fruits have a pronounced effect on bone, as shown by higher bone mass, trabecular bone volume, number, and thickness, and lower trabecular separation through enhancing bone formation and suppressing bone resorption, resulting in greater bone strength. Such osteoprotective effects seem to be mediated via antioxidant or anti-inflammatory pathways and their downstream signaling mechanisms, leading to osteoblast mineralization and osteoclast inactivation. In future studies, randomized controlled trials are warranted to extend the bone-protective activity of fruits and their bioactive compounds. Mechanistic studies are needed to differentiate the roles of phytochemicals and other constitutes in bone protection offered by the fruits. Advanced imaging technology will determine the effective doses of phytochemicals and their metabolites in improving bone mass, microarchitecture integrity, and bone strength, which is a critical step in translating the benefits of fruit consumption on osteoporosis into clinical data.

Shen CL, von Bergen V, Chyu MC, Jenkins MR…
Nutr Res Dec 2012
PMID: 23244535

Plum Extract in Fetal and Newborn Mice

Abstract

Effects of plum extract on skeletal system of fetal and newborn mice.

Objective: To evaluate the effects of Prunus domestica L. extracts on fetuses and neonatal skeletal systems. Materials and Methods: A total of 32 pregnant mice (Mus musculus) received vehicle and plum hydroalcoholic extract at gestational days 1-18 and during the entire gestational period as well as 10 days postpartum, respectively. A total of 30 nonpregnant mice were fed plum hydroalcoholic extract and plum juice extract for 30 days. Bone calcium content and serum concentrations of calcium, magnesium and alkaline phosphatase were measured. The skeletal systems of their fetuses and neonates were stained with Alcian blue and alizarin red S and the length of femur, tibia, and their ossification center were measured. Results: Crown-rump length of the newborn mice from mothers treated with plum extract (4.61 ± 0.25 mm) was higher compared to the control group (4.48 ± 0.31 mm, p = 0.001), and the femur osteogenesis index of newborn mice from mothers treated with plum extract was also higher (0.87 ± 0.09) compared to the control group (0.81 ± 0.06, p = 0.007). Conclusion: The findings showed that pregnant mice treated with plum extract had fetuses and newborn mice with higher osteogenesis index than those of the controls.

Monsefi M, Parvin F, Farzaneh M
Med Princ Pract 2013
PMID: 23406627

Review: Dried Plum

Abstract

Viewpoint: dried plum, an emerging functional food that may effectively improve bone health.

Osteoporosis is a debilitating disorder that affects both female and male, albeit to a greater extent in women than men. As the demographic shift to a more aged population continues, a growing number of men and women will be afflicted with osteoporosis and a search for potential non-pharmacological alternative therapies for osteoporosis is of prime interest. Aside from existing drug therapies, certain lifestyle and nutritional factors are known to reduce the risk of osteoporosis. Among nutritional factors, recent observations suggest that dried plum, or prunes (Prunus domestica L.) is the most effective fruit in both preventing and reversing bone loss. Animal studies and a 3-month clinical trial conducted in our laboratories have shown that dried plum has positive effects on bone indices. The animal data indicate that dried plum not only protects against but more importantly reverses bone loss in two separate models of osteopenia. Our initial animal study indicated that dried plum prevented the ovariectomy-induced reduction in bone mineral density (BMD) of the femur and lumbar vertebra. In another study, to mimic established osteoporosis, rats were ovariectomized and allowed to lose bone before the initiation of treatment. Dried plum as low as 5% (w/w) restored BMD to the level of intact rats. More importantly, dried plum reversed the loss of trabecular architectural properties such as trabecular number and connectivity density, and trabecular separation. We have also shown the effectiveness of dried plum in reversal of bone loss due to skeletal unloading. Analysis of BMD and trabecular bone structure by microcomputed tomography (microCT) revealed that dried plum enhanced bone recovery during reambulation following skeletal unloading and had comparable effects to parathyroid hormone. In addition to the animal studies, our 3-month clinical trial indicated that the consumption of dried plum daily by postmenopausal women significantly increased serum markers of bone formation, total alkaline phosphatase, bone-specific alkaline phosphatase and insulin-like growth factor-I by 12, 6, and 17%, respectively. This review summarizes the findings of studies published to date which examine the beneficial effects of dried plum on bone in both female and male animal models of osteoporosis as well as the only published clinical study.

Hooshmand S, Arjmandi BH
Ageing Res. Rev. Apr 2009
PMID: 19274852

Dried Plum, FOS, and Soy

Abstract

Addition of fructooligosaccharides and dried plum to soy-based diets reverses bone loss in the ovariectomized rat.

Dietary bioactive components that play a role in improving skeletal health have received considerable attention in complementary and alternative medicine practices as a result of their increased efficacy to combat chronic diseases. The objectives of this study were to evaluate the additive or synergistic effects of dried plum and fructooligosaccharides (FOS) and to determine whether dried plum and FOS or their combination in a soy protein-based diet can restore bone mass in ovarian hormone deficient rats. For this purpose, 72 3-month-old female Sprague-Dawley rats were divided into six groups (n = 12) and either ovariectomized (Ovx, five groups) or sham-operated (sham, one group). The rats were maintained on a semipurified standard diet for 45 days after surgery to establish bone loss. Thereafter, the rats were placed on one of the following dietary treatments for 60 days: casein-based diet (Sham and Ovx), soy-based diet (Ovx + soy) or soy-based diet with dried plum (Ovx + soy + plum), FOS (Ovx + soy + FOS) and combination of dried plum and FOS (Ovx + soy + plum + FOS). Soy protein in combination with the test compounds significantly improved whole-body bone mineral density (BMD). All test compounds in combination with soy protein significantly increased femoral BMD but the combination of soy protein, dried plum and FOS had the most pronounced effect in increasing lumbar BMD. Similarly, all of the test compounds increased ultimate load, indicating improved biomechanical properties. The positive effects of these test compounds on bone may be due to their ability to modulate bone resorption and formation, as shown by suppressed urinary deoxypyridinoline excretion and enhanced alkaline phosphatase activity.

Johnson CD, Lucas EA, Hooshmand S, Campbell S…
Evid Based Complement Alternat Med 2011
PMID: 18955356 | Free Full Text

FOS and Dried Plum

Abstract

Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds.

Functional foods and/or their bioactive compounds playing a role in improving skeletal health have received considerable attention. The objective of the present study was to determine the extent to which certain functional foods as (1) whole, e.g., dried plum (DP), figs, dates, raisin, and blueberry, (2) fractionated, e.g., DP puree, DP juice, and DP pulp/skin, or (3) isolated, e.g., DP polyphenols, fructooligosaccharides (FOS), and beta-hydroxy-beta-methylbutyrate, forms reverse bone loss in an ovariectomized (Ovx) rat model of osteoporosis. Additionally, some of these components were tested in reversal of bone loss in combination. For this purpose, 180 3-month-old female Sprague-Dawley rats were divided into 15 groups (n = 12) and either Ovx (14 groups) or sham-operated (Sham, one group). Rats were maintained on a semipurified standard diet for 45 days after surgery to establish bone loss. Thereafter, rats were placed on one of the following dietary treatments for 60 days: casein-based diet (Sham and Ovx). The remaining 13 Ovx groups were placed on various treatment diets. Results showed that diets supplemented with 5% FOS + 7.5% DP was most effective in reversing both right femur and fourth lumbar bone mineral density and fourth lumbar calcium loss while significantly decreasing trabecular separation. There were no significant effects of treatment on serum or urine measures of bone turnover. Although other treatments were good at altering some bone parameters, none had the success in altering several bone health indicators as the diets supplemented with 5% FOS + 7.5% DP. The findings of this study suggest the combination of 5% FOS + 7.5% DP is capable of reversing Ovx-induced bone loss.

Arjmandi BH, Johnson CD, Campbell SC, Hooshmand S…
J Med Food Apr 2010
PMID: 20132045

Dried Plum Decreases Osteoclast Activity

Abstract

Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators.

Dried plums and their polyphenols have been shown to suppress bone resorption by downregulating receptor activator NF-kappaB ligand (RANKL). Due to the anti-inflammatory and antioxidant properties of these compounds, this study was designed to investigate whether dried plum polyphenols exert additional, more direct effects on osteoclasts and their precursors. RAW 264.7 macrophages were used as a model to study osteoclast precursors and osteoclast differentiation and activity. Under inflammatory conditions induced by lipopolysaccharide (LPS), polyphenols extracted from dried plum (10, 20, and 30 microg/mL) downregulated osteoclast precursor cyclooxygenase expression and nitric oxide (NO) by inhibiting inducible NO synthase. NO and tumor necrosis factor (TNF)-alpha were also suppressed in the presence of RANKL during osteoclastogenesis by the polyphenols. Increased TNF-alpha production in response to oxidative stress, but not LPS, was decreased over time. As expected, LPS and H2O2 significantly increased the number of tartrate-resistant acid phosphatase-positive cells by 127% and 30%, respectively. Dried plum polyphenols decreased osteoclast differentiation under normal as well as inflammatory and oxidative stress conditions, coincident with the suppression of the transcription factor, nuclear factor for activated T cells (NFATcl). These inhibitory effects on osteoclastogenesis were confirmed in primary bone marrow cultures. Resorption pit formation was decreased to a similar extent as osteoclast differentiation, suggesting that dried plum polyphenols primarily affect osteoclast differentiation as opposed to activity. Our data demonstrate that dried plum polyphenols directly inhibit osteoclastogenesis, leading to a decrease in osteoclast activity, by downregulating NFATc1 and inflammatory mediators.

Bu SY, Lerner M, Stoecker BJ, Boldrin E…
Calcif. Tissue Int. Jun 2008
PMID: 18509698

Tocotrienols More Effective Than Calcium?

Abstract

Palm tocotrienol supplementation enhanced bone formation in oestrogen-deficient rats

Postmenopausal osteoporosis is the commonest cause of osteoporosis. It is associated with increased free radical activity induced by the oestrogen-deficient state. Therefore, supplementation with palm-oil-derived tocotrienols, a potent antioxidant, should be able to prevent this bone loss. Our earlier studies have shown that tocotrienol was able to prevent and even reverse osteoporosis due to various factors, including oestrogen deficiency. In this study we compared the effects of supplementation with palm tocotrienol mixture or calcium on bone biomarkers and bone formation rate in ovariectomised (oestrogen-deficient) female rats. Our results showed that palm tocotrienols significantly increased bone formation in oestrogen-deficient rats, seen by increased double-labeled surface (dLS/Bs), reduced single-labeled surface (sLS/BS), increased mineralizing surface (MS/BS), increased mineral apposition rate (MAR), and an overall increase in bone formation rate (BFR/BS). These effects were not seen in the group supplemented with calcium. However, no significant changes were seen in the serum levels of the bone biomarkers, osteocalcin, and cross-linked C-telopeptide of type I collagen, CTX. In conclusion, palm tocotrienol is more effective than calcium in preventing oestrogen-deficient bone loss. Further studies are needed to determine the potential of tocotrienol as an antiosteoporotic agent.

Soelaiman IN, Ming W, Abu Bakar R, Hashnan NA…
Int J Endocrinol. 2012
PMID: 23150728


Even though this is an animal study, it is impressive that tocotrienols were more effective than calcium.

Articles Per Year

I’m always amazed by how much more information there is about a disorder than doctors will talk about or know about. There are thousands of interesting studies published about osteoporosis every year. There are more studies almost every year. In 2012, there were 3,354 articles listed on PubMed that included the term osteoporosis. There are 59,283 articles in total as of today.

Very few of these studies make the news. Most of the studies that make the news are  reported because they were surprising in some way. Many treatments are just not on the radar. It’s only when you start searching do you see how much evidence there is for different treatments. Many of the studies are on vitamins, supplements, or dietary modifications that are easy to implement.

 

Hello

Hello and welcome to Osteoporosis-Studies. As my About page says, my name is Terry. I’m here to collect studies on treatments for osteoporosis. I’m most interested in treatments that are not only safe and effective, but preferably good for overall health.