Naringin Graft Material Enhances Bone Growth in Rabbits

Abstract

A novel porous gelatin composite containing naringin for bone repair.

As Gu-Sui-Bu (GSB) is a commonly used Chinese medical herb for therapeutic treatment of bone-related diseases, naringin is its main active component. This study elucidates how various concentrations of naringin solution affect the activities of bone cells, based on colorimetric, alkaline phosphatase activity, nodule formation, and tartrate-resistant acid phosphatase activity assays to determine the optimal concentration of naringin. GGT composite was obtained by combining genipin cross-linked gelatin and β-tricalcium phosphate. GGTN composite was prepared by mixing GGT composite with the predetermined concentration of naringin. Porous GGT and GGTN composites were then made using a salt-leaching procedure. The potential of the composites in repairing bone defects was evaluated and compared in vivo by using the biological response of rabbit calvarial bone to these composites. Consequently, the most effective concentration of naringin was 10 mg/mL, which significantly enhanced the proliferation of osteoblasts, osteoclast activity, and nodule formation without affecting the alkaline phosphatase activity of osteoblasts and mitochondrial activity of mixed-bone cells. Radiographic analysis revealed greater new bone ingrowth in the GGTN composite than in the GGT composite at the same implantation time. Therefore, the GGTN composite is highly promising for use as a bone graft material.

Chen KY, Lin KC, Chen YS, Yao CH
Evid Based Complement Alternat Med 2013
PMID: 23431335 | Free Full Text

Neoeriocitrin More Active Than Naringin in Bone Cells

Abstract

Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1.

Naringin is considered the main effective compound of Drynaria Rhizome, which is used commonly in the treatment of osteoporosis in traditional Chinese medicine. However, we found neoeriocitrin, a new compound isolated from Drynaria Rhizome, showed a better activity than naringin on proliferation and osteogenic differentiation in MC3T3-E1. Both neoeriocitrin and naringin exhibited the best effect on proliferation and osteogenic differentiation at concentration of 2μg/ml. Neoeriocitrin more significantly improved proliferation and alkaline phosphatase (ALP) activity as well as up-regulated Runx2, COLI and OCN expression by 56%, 37% and 14% respectively than naringin. Furthermore, neoeriocitrin could rescue the inhibition effect of cell differentiation induced by PD98059 to some degree. Therefore, neoeriocitrin may be a new promising candidate drug for treatment of osteoporosis.

Li L, Zeng Z, Cai G
Phytomedicine Aug 2011
PMID: 21741227

Naringin Improves Bone properties Through Estrogen Receptors in Ovariectomized Mice

Abstract

Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells.

Naringin, a flavanone glycoside in citrus fruits, has been recently reported to stimulate bone formation in vitro and in vivo. The present study was designed to determine if naringin could exert oestrogen-like protective actions in bone.
Young C57/BL6J mice were ovariectomized (OVX) and treated orally with naringin (0.2 or 0.4 mg*g(-1)*day(-1)), 17beta-oestradiol (2 microg*g(-1)*day(-1)) or its vehicle for 6 weeks. Bone mineral densities (BMD) and polar stresss-train index (SSI) were measured by peripheral quantitative computed tomography. Rat osteoblast-like UMR-106 cells were co-incubated with the oestrogen receptor (ER) antagonist ICI 182780 to determine if the effects of naringin on osteoblastic functions were ER dependent. Functional transactivation of ERalpha and ERbeta as well as ERalpha phosphorylation by naringin were also studied.
Naringin at 0.4 mg*g(-1)*day(-1) increased BMD at trabecular-rich bone in OVX mice. Naringin (at both doses) significantly increased SSI at distal femur and lumbar spine and increased biomechanical strength (ultimate load and energy for breaking) at tibia diaphysis in OVX mice. The stimulatory effects of naringin on osteoblastic functions could be abolished by co-incubation with ICI 182780 in UMR-106 cells. Naringin failed to stimulate ERalpha- or ERbeta-mediated oestrogen response element-dependent luciferase activity but could significantly induce ERalpha phosphorylation at serine 118, in UMR-106 cells.
Naringin was effective in protecting against OVX-induced bone loss in mice and its actions might be mediated through ligand-independent activation of ER in osteoblastic cells.

Pang WY, Wang XL, Mok SK, Lai WP…
Br. J. Pharmacol. Apr 2010
PMID: 20397301 | Free Full Text

Rutin Inhibits Osteoclasts by Decreasing ROS and TNF-alpha by Inhibiting NF-kappaB

Abstract

Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappaB.

Rutin, a glycoside of flavonol, inhibits osteoclast formation induced by receptor activator of NF-kappaB ligand (RANKL) in bone marrow-derived macrophages. It reduces reactive oxygen species produced by RANKL and its inhibitory effect results from reduced levels of TNF-alpha. Rutin also lowers NF-kappaB activation in response to RANKL.

Kyung TW, Lee JE, Shin HH, Choi HS
Exp. Mol. Med. Feb 2008
PMID: 18305398 | Free Full Text

Rutin Inhibits Osteopenia in Ovariectomized Rats

Abstract

Rutin inhibits ovariectomy-induced osteopenia in rats.

Several studies suggest that polyphenols might exert a protective effect against osteopenia. The present experiment was conducted to observe the effects of rutin (quercetin-3-O-glucose rhamnose) on bone metabolism in ovariectomized (OVX) rats. Thirty 3-month-old Wistar rats were used. Twenty were OVX while the 10 controls were sham-operated (SH). Among the 20 OVX, for 90 days after surgery 10 were fed the same synthetic diet as the SH or OVX ones, but 0. 25% rutin (OVX + R) was added. At necropsy, the decrease in uterine weight was not different in OVX and OVX + R rats. Ovariectomy also induced a significant decrease in both total and distal metaphyseal femoral mineral density, which was prevented by rutin consumption. Moreover, femoral failure load, which was not different in OVX and SH rats, was even higher in OVX + R rats than in OVX or SH rats. In the same way, on day 90, both urinary deoxypyridinoline (DPD) excretion (a marker for bone resorption) and calciuria were higher in OVX rats than in OVX + R or SH rats. Simultaneously, plasma osteocalcin (OC) concentration (a marker for osteoblastic activity) was higher in OVX + R rats than in SH rats. High-performance liquid chromatography (HPLC) profiles of plasma samples from OVX + R rats revealed that mean plasma concentration of active metabolites (quercetin and isorhamnetin) from rutin was 9.46+/-1 microM, whereas it was undetectable in SH and OVX rats. These results indicate that rutin (and/or its metabolites), which appeared devoid of any uterotrophic activity, inhibits ovariectomy-induced trabecular bone loss in rats, both by slowing down resorption and increasing osteoblastic activity.

Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ…
J. Bone Miner. Res. Nov 2000
PMID: 11092407

Quercetin and Rutin Inhibit Resorption by Their Estrogen Receptor Proteins

Abstract

Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin.

Flavonols, in contrast to soybean isoflavones, are the most abundant phytoestrogens in western diets, being present in onions, beans, fruits, red wine, and tea. They may protect against atherosclerosis, inhibit certain cancer cell types, and reduce bone resorption. The most widely distributed flavonol is quercetin, which occurs mainly as its glycoside, rutin, but data are very scarce regarding the precise mechanism of action of these compounds on bone-resorbing cells at concentrations similar to those detected in human plasma. We have therefore investigated the effects of nanomolar concentrations of quercetin and rutin on the development and activity of osteoclasts in vitro compared with the effects of 17beta-estradiol. Nonadherent porcine bone marrow cells were cultured on dentine slices in the presence of 10 nM 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), with or without 10 nM quercetin, 10 nM rutin or 10 nM 17beta-estradiol for 11 days. Multinuclear TRAP+ cells that resorbed dentine (osteoclasts) developed in the presence of 1,25(OH)2D3, but their number was significantly reduced by quercetin, rutin, and 17beta-estradiol (P < 0.05). Like 17beta-estradiol, both flavonols also significantly reduced resorption (P<0.05) as assessed by the size of pits resorbed on dentine slices. Osteoclasts and osteoclast progenitors contained estrogen receptor alpha (ERalpha), ERbeta, and RANK proteins. Both flavonols increased nuclear ERbeta protein and decreased ERalpha protein of osteoclast progenitors. Moreover, rutin reduced RANK protein, whereas 17beta-oestradiol and quercetin promoted apoptosis by cleavage of caspase-8 and caspase-3. All the effects of flavonols were reversed by 1 microM ICI 182,780, an estrogen antagonist. Thus, the anti-resorbing properties of flavonols are mainly mediated by ER proteins through the inhibition of RANK protein or the activation of caspases.

Rassi CM, Lieberherr M, Chaumaz G, Pointillart A…
Cell Tissue Res. Mar 2005
PMID: 15688188

Hesperidin Prevents Bone Loss in Orchidectomized Mice

Abstract

Hesperidin Prevents Androgen Deficiency-induced Bone Loss in Male Mice.

The purpose of this study was to examine whether hesperidin inhibits bone loss in androgen-deficient male mice. Male ddY mice aged 7 weeks underwent either a sham operation or orchidectomy (ORX) and were divided into five groups: a sham-operated group fed a control diet (Sham) based on AIN-93G formulation with corn oil instead of soy bean oil, an ORX group fed the control diet (ORX), a group fed the control diet containing 0.5% hesperidin (ORX + H), a group fed the control diet containing 0.7% α-glucosylhesperidin (ORX + αG), and a group fed the control diet containing 0.013% simvastatin (ORX + St). Four weeks after intervention, ORX mice showed a striking decrease in seminal vesicle weight, which was not affected by the administration of hesperidin, α-glucosylhesperidin, or simvastatin. Femoral BMD was significantly reduced by ORX, and bone loss was inhibited by the administration of hesperidin, α-glucosylhesperidin or simvastatin. Histomorphometric analysis showed that the bone volume and trabecular thickness were significantly lower, and the osteoclast number was higher in the distal femoral cancellous bone in the ORX group than in the Sham group, and these were normalized in the ORX + H, ORX + αG and ORX + St groups. These results indicate that hesperidin inhibited bone resorption and hyperlipidemia, in ORX mice, and the preventive effect was stronger than that observed in ovariectomized mice in our previous study.

Chiba H, Kim H, Matsumoto A, Akiyama S…
Phytother Res May 2013
PMID: 23674260

Hesperidin Inhibits Osteopenia in Rats

Abstract

Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats.

The main aim of this study was to investigate the bone-sparing effect of hesperidin, one of the main flavonoid present in oranges, in two age groups of ovariectomized female rats, compared with their intact controls. Young (3 mo) and adult (6 mo) female Wistar rats were sham operated (SH) or ovariectomized (OVX) and then pair-fed for 90 days a casein-based diet supplemented or not with 0.5% hesperidin (Hp; n = 10/group). In older rats, Hp intake led to a partial inhibition of OVX-induced bone loss, whereas a complete inhibition was obtained in younger animals. At both ages, while plasma osteocalcin concentrations were unchanged, urinary excretion of deoxypyridinoline was reduced by Hp intake, suggesting that Hp was able to slow down bone resorption. Unexpectedly, in intact young rats, Hp consumption resulted in a significant increase in bone mineral density (BMD). Indeed, 6-mo-old HpSH rats had a similar BMD to 9-mo-old nontreated SH adult rats, suggesting an accelerated bone mass gain in the young rats. In contrast, in intact adult rats, Hp did not further increase BMD but did improve their bone strength. The results of this study show a protective effect of Hp on bone loss in OVX rats of both ages without uterine stimulation and accompanied by a lipid-lowering effect. The unexpected and intriguing findings obtained in intact rats showing improved BMD in young rats and improved femoral load in adult rats merit further investigation. The bone and lipid benefits of hesperidin make it an attractive dietary agent for the management of the health of postmenopausal women.

Horcajada MN, Habauzit V, Trzeciakiewicz A, Morand C…
J. Appl. Physiol. Mar 2008
PMID: 18174393 | Free Full Text

Resveratrol Analogues Show No Effect on Bones In Rats

Abstract

Potential of resveratrol analogues as antagonists of osteoclasts and promoters of osteoblasts.

The plant phytoalexin resveratrol was previously demonstrated to inhibit the differentiation and bone resorbing activity of osteoclasts, to promote the formation of osteoblasts from mesenchymal precursors in cultures, and inhibit myeloma cell proliferation, when used at high concentrations. In the current study, we screened five structurally modified resveratrol analogues for their ability to modify the differentiation of osteoclasts and osteoblasts and proliferation of myeloma cells. Compared to resveratrol, analogues showed an up to 5,000-fold increased potency to inhibit osteoclast differentiation. To a lesser extent, resveratrol analogues also promoted osteoblast maturation. However, they did not antagonize the proliferation of myeloma cells. The potency of the best-performing candidate in vitro was tested in vivo in an ovariectomy-induced model of osteoporosis, but an effect on bone loss could not be detected. Based on their powerful antiresorptive activity in vitro, resveratrol analogues might be attractive modulators of bone remodeling. However, further studies are required to establish their efficacy in vivo.

Kupisiewicz K, Boissy P, Abdallah BM, Hansen FD…
Calcif. Tissue Int. Nov 2010
PMID: 20842496 | Free Full Text

Resveratrol Improves Bone After Calorie Restriction in Rats

Abstract

Effect of catch-up growth by various dietary patterns and resveratrol intervention on bone status.

Catch-up growth (CUG) after food restriction can increase the risks for insulin resistance-related diseases, and to our knowledge, no previous studies have addressed how bone is influenced by CUG when refeeding diet content differs. The objective of this study was to investigate the bone status resulting from CUG induced by varying refeeding dietary patterns, and to assess the potential influencing factors and the effect of resveratrol on bone status during CUG. Experimental rats were randomly divided into five groups: normal chow (NC) group; CUG group (CUG, containing two subgroups, respectively, refeeding with normal chow or high-fat diet); high-fat diet (HF) group; and resveratrol intervention groups (CUGE and HFE). Bone parameters were detected by dual-energy X-ray absorptiometry. Serum concentrations of tumor necrosis factor (TNF)-α, body weight and food intake were also recorded. Our results showed that food restriction induced a significant decrease in bone parameters. Eight-week CUG by normal chow had a greater degree of improvement in bone mineral density than high-fat diet, and even returned to normal level similar to NC. Bone parameters were elevated in varying degrees in the HF group compared with the NC group. In the resveratrol intervention groups, bone parameters significantly increased. Furthermore, bone parameters were inversely related with serum TNF-α concentrations, but showed positive correlation with body weight. In conclusion, the study shows that CUG can partially reverse the deleterious effects of caloric restriction on bone health, especially in the refeeding with normal chow group. Moreover, resveratrol has a protective effect on bone status during the period of CUG. Serum TNF-α levels and body weight also seem to play an important role in regulating bone parameters.

Chen LL, Wang SX, Dai Y, Buckoreelall P…
Exp. Biol. Med. (Maywood) Mar 2012
PMID: 22442358