High Sodium Causes Loss of Calcium in Rats


Calcium metabolism and bone calcium content in normal and oophorectomized rats consuming various levels of saline for 12 months.

The effect of different intakes of salt for 12 mo on bone calcium content and urinary excretion of calcium and hydroxyproline were examined in sham operated and oophorectomized (OX) rats to determine the long term effects of high sodium intake and its interaction with estrogen deficiency. Sham operated (n = 24) and OX (n = 24) rats were divided into groups of six rats in a 2 x 4 design. One group of sham and one of OX rats were given 0, 2, 6 or 18 g/L sodium chloride to drink. Urine samples were collected at 0, 2, 4, 6, 10 and 12 mo for the measurement of sodium, calcium, creatinine and hydroxyproline. At the end of 12 mo, blood was taken for measurement of calcium, albumin, alkaline phosphatase and creatinine and the left femur was removed and analyzed for calcium and phosphate. Body weights of the OX rats were higher than the sham operated controls. At the start of the experiment (10 d after OX) urinary excretions of calcium and hydroxyproline were significantly higher in OX rats. However, after 4-6 mo, they were significantly lower in OX rats. Calcium excretion and hydroxyproline excretion were increased by high salt intake, and there was a significant correlation between sodium and calcium excretion (r = 0.962). Bone calcium content of OX rats was lower than their corresponding sham-operated controls. Sodium intake also had a significant effect on bone calcium content. Multiple regression analysis showed that OX and sodium intake explained 7.6% and 1.5% of the variation in bone calcium content. We conclude that high sodium intake causes increased loss of calcium and reduces bone calcium content in sham-operated as well as OX rats.

Chan EL, Swaminathan R
J. Nutr. Mar 1998
PMID: 9482774 | Free Full Text