High Protein + Low Calcium Increases Fracture – 2008

Abstract

Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study.

Excess dietary proteins and “acid ash” diets have been suspected to increase the risk of osteoporosis, but experimental and epidemiological evidence is mixed. We aimed to determine whether the association between protein intake and the overall acid-base equilibrium of the diet (as renal net acid excretion [RNAE] estimate) and fracture risk vary according to calcium intake. During an average of 8.37 +/- 1.73 yr of follow-up, 2408 women reported a fracture (excluding high-impact trauma) among 36,217 postmenopausal women from the E3N prospective study. We used Cox regression models to study the interaction between calcium and, respectively, proteins and RNAE, from the 1993 dietary questionnaire for fracture risk determination, adjusting for potential confounders. There was no overall association between fracture risk and total protein or RNAE. However, in the lowest quartile of calcium (<400 mg/1000 kcal), high protein intake was associated with a significant increased fracture risk (RR = 1.51 for highest versus lowest quartile; 95% CI, 1.17-1.94). An increasing fracture risk with increasing animal protein intake was also observed (trend, p < 0.0001). A similar pattern of interaction for fracture risk was observed between RNAE and calcium. In this Western population of postmenopausal women with normal to high protein intake and fairly high calcium intake, there was no overall association between total protein or RNAE and fracture risk. However, there was some evidence that high protein-high acid ash diets were associated with an increased risk of fracture when calcium intake was low (<400 mg/1000 kcal).

Dargent-Molina P, Sabia S, Touvier M, Kesse E…
J. Bone Miner. Res. Dec 2008
PMID: 18665794