Abstract
A synergistic bone sparing effect of curcumin and alendronate in ovariectomized rat.
The purpose of this study was to evaluate the therapeutic effects of combination therapy with curcumin and alendronate on bone remodeling after ovariectomy in rats.
Eighty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed amongst four groups: untreated OVX group, curcumin-administered group, alendronate-administered group, and the combination therapy group. At 8 and 12 weeks after surgery, rats from each of the groups were euthanized. Serum biochemical markers of bone turnover, including osteocalcin and alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX) were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test.
Serum biochemical markers of bone turnover in the experiment groups (curcumin administered group, alendronate administered group, and the combination therapy group) were significantly lower than in the untreated OVX group (p < 0.05). The combination therapy group had lower ALP and CTX-1 concentrations at 12 weeks, which were statistically significant compared with the curcumin only and the alendronate only group (p < 0.05). The combination therapy group had a significant increase in BMD at 8 weeks and Cr.BMD at 12 weeks compared with the curcumin-only group (p = 0.005 and p = 0.013, respectively). The three point bending test showed that the 4th lumbar vertebrae of the combination therapy group had a significantly greater maximal load value compared to that of the curcumin only and the alendronate only group (p < 0.05).
The present study demonstrated that combination therapy with a high dose of curcumin and a standard dose of alendronate has therapeutic advantages over curcumin or alendronate monotherapy, in terms of the synergistic antiresorptive effect on bone remodeling, and improving bone mechanical strength.
Cho DC, Kim KT, Jeon Y, Sung JK
Acta Neurochir (Wien) Dec 2012
PMID: 23053289