Category Archives: Vitamin K2

Review: MK-4 Stimulates Osteoblasts

Abstract

[Effect of vitamin K on bone material properties].

Collagen cross-links are determinants of bone quality. Because vitamin K is thought to ameliorate bone quality, we summarized the literature regarding the effect of vitamin K such as menatetorenone (MK-4) on bone matrix property in the review. MK-4 seems to stimulate the osteoblastic activity. This results in the increase in collagen accumulation and lysyl oxidase controlled enzymatic cross-links in bone. Furthermore, vitamin K stimulates the secretion of collagen binding protein regulating proper fibrillogenesis such as leucine-rich repeat protein (tsukushi). This kinds of non-collagenous proteins induced by the treatment of vitamin K may also affect proper collagen cross-link formation and show the favorable effect on bone material quality.

Saito M
Clin Calcium Dec 2009
PMID: 19949271

Review: Vitamin K and Bone Health in Postmenopausal Women

Abstract

Effects of vitamin K in postmenopausal women: mini review.

Possible benefits of vitamin K on bone health, fracture risk, markers of bone formation and resorption, cardiovascular health, and cancer risk in postmenopausal women have been investigated for over three decades; yet there is no clear evidence-based universal recommendation for its use. Interventional studies showed that vitamin K1 provided significant improvement in undercarboxylated osteocalcin (ucOC) levels in postmenopausal women with normal bone mineral density (BMD); however, there are inconsistent results in women with low BMD. There is no study showing any improvement in bone-alkaline-phosphatase (BAP), n-telopeptide of type-1 collagen (NTX), 25-hydroxy-vitamin D, and urinary markers. Improvement in BMD could not be shown in the majority of the studies; there is no interventional study evaluating the fracture risk. Studies evaluating the isolated effects of menatetrenone (MK-4) showed significant improvement in osteocalcin (OC); however, there are inconsistent results on BAP, NTX, and urinary markers. BMD was found to be significantly increased in the majority of studies. The fracture risk was assessed in three studies, which showed decreased fracture risk to some extent. Although there are proven beneficial effects on some of the bone formation markers, there is not enough evidence-based data to support a role for vitamin K supplementation in osteoporosis prevention among healthy, postmenopausal women receiving vitamin D and calcium supplementation. Interventional studies investigating the isolated role of vitamin K on cardiovascular health are required. Longterm clinical trials are required to evaluate the effect of vitamin K on gynecological cancers. MK-4 seems safe even at doses as high as 45 mg/day.

Guralp O, Erel CT
Maturitas Mar 2014
PMID: 24342502

Review: Phytochemicals for Bone Osteoporosis

Abstract

Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.

Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.

Yamaguchi M
Yakugaku Zasshi Nov 2006
PMID: 17077614 | Free Full Text

Zinc Acexamate Anabolic Effects > Zinc-Carnosine, Zinc, or MK-4 in Rat Tissue

Abstract

Potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats.

1. The effect of zinc compounds on bone components in the femoral-metaphyseal tissues from elderly female rats (50 weeks old) was investigated in vitro. Bone tissues were cultured for 24 hr in Dulbecco’s modified Eagle medium containing either vehicle or zinc compounds (10[-7] to 10[-5] M).
2. Zinc content, alkaline phosphatase activity, deoxyribonucleic acid (DNA) and calcium contents in the metaphyseal tissues were significantly increased by the presence of zinc sulfate (10[-6] and 10[-5] M), beta-alanyl-L-histidinato zinc (AHZ; 10[-6] and 10[-5] M) and zinc acexamate (10[-7] to 10[-5] M). At 10[-5] M, the effect of zinc acexamate on the increase of bone components was more potent than that of zinc sulfate or AHZ.
3. The effect of zinc acexamate (10[-5] M) on the increase of alkaline phosphatase activity in the metaphyseal tissues was remarkable as compared with that of insulin (10[-8] M), estrogen (10[-9] M), insulin-like growth factor-I (10[-8] M), transforming growth factor-beta (10[-10] M), sodium fluoride (10[-3] M), dexamethasone (10[-7] M) and vitamin K2 (menaquinone-4; 10[-5] M) with an effective concentration.
4. The stimulatory effect of zinc acexamate (10[-5] M) on alkaline phosphatase activity and calcium content in the metaphyseal tissues was completely blocked by the presence of dipicolinate (10[-3] M), a chelator of zinc ion, and of cycloheximide (10[-6] M), an inhibitor of protein synthesis.
5. The present study demonstrates that zinc acexamate has a potent anabolic effect on bone components in the femoral-metaphyseal tissues from female elderly rats in vitro. The effect of zinc acexamate may be based in part on protein synthesis related to zinc ion in bone cells.

Yamaguchi M, Gao YH
Gen. Pharmacol. Mar 1998
PMID: 9510097

Low Dose MK-4 for a Year Maintains Bone Density and Improves Bone Quality in Postmenopausal Japanese Women

Abstract

Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women.

Menaquinone-4 (MK-4) administered at a pharmacological dosage of 45 mg/day has been used for the treatment of osteoporosis in Japan. However, it is not known whether a lower dose of MK-4 supplementation is beneficial for bone health in healthy postmenopausal women. The aim of this study was to examine the long-term effects of 1.5-mg daily supplementation of MK-4 on the various markers of bone turnover and bone mineral density (BMD). The study was performed as a randomized, double-blind, placebo-controlled trial. The participants (aged 50-65 years) were randomly assigned to one of two groups according to the MK-4 dose received: the placebo-control group (n = 24) and the 1.5-mg MK-4 group (n = 24). The baseline concentrations of undercarboxylated osteocalcin (ucOC) were high in both groups (>5.1 ng/ml). After 6 and 12 months, the serum ucOC concentrations were significantly lower in the MK-4 group than in the control group. In the control group, there was no significant change in serum pentosidine concentrations. However, in the MK-4 group, the concentration of pentosidine at 6 and 12 months was significantly lower than that at baseline. The forearm BMD was significantly lower after 12 months than at 6 months in the control group. However, there was no significant decrease in BMD in the MK-4 group during the study period. These results suggest that low-dose MK-4 supplementation for 6-12 months improved bone quality in the postmenopausal Japanese women by decreasing the serum ucOC and pentosidine concentrations, without any substantial adverse effects.

Koitaya N, Sekiguchi M, Tousen Y, Nishide Y…
J. Bone Miner. Metab. Mar 2014
PMID: 23702931


This study appears to be a continuation of this 4 week study: Low Dose MK-4 May Benefit Bones in Postmenopausal Japanese Women

Low Dose MK-4 May Benefit Bones in Postmenopausal Japanese Women

Abstract

Effect of low dose vitamin K2 (MK-4) supplementation on bio-indices in postmenopausal Japanese women.

It has been reported that treatment with a pharmacological dose (45 mg/d) of menaquinone-4 (MK-4) prevents bone loss in postmenopausal women. However, it is not known whether supplementation with low dose MK-4 has beneficial effects on bone metabolism in healthy women. The aim of this study is to examine the effects of the supplementation of 1.5 mg/d MK-4 for 4 wk on bone and lipid metabolism in healthy postmenopausal Japanese women. The study was performed as a randomized double blind placebo-controlled trial. The participants aged 53-65 y were randomly assigned to 2 groups and supplemented with 1.5 mg/d of MK-4 or a placebo for 4 wk (n=20 for each group). The most marked effects of MK-4 intake were observed on serum osteocalcin (OC) concentrations. Serum undercarboxylated OC (ucOC) concentration decreased, and the gamma-carboxylated OC (GlaOC) and GlaOC/GlaOC+ucOC ratio that indicates the degree of OC gamma-carboxylation increased significantly at 2 and 4 wk compared with that at baseline in the MK-4 group. The serum ucOC and GlaOC concentrations in the MK-4 group were significantly different from those in the placebo group at 2 wk. These results suggest that supplementation with 1.5 mg/d MK-4 accelerated the degree of OC gamma-carboxylation. The concentrations of serum lipids and other indices were not different between the groups at either intervention period. Thus, the additional intake of MK-4 might be beneficial in the maintenance of bone health in postmenopausal Japanese women.

Koitaya N, Ezaki J, Nishimuta M, Yamauchi J…
J. Nutr. Sci. Vitaminol. Feb 2009
PMID: 19352059 | Free Full Text


In conclusion, our study clearly shows that the vitamin K status of postmenopausal women taking an extra dose of 1.5 mg MK-4 daily substantially improved after 4 wk. This improved satus was evidenced by the more than 1 ng/mL of serum MK-4 concentration. This suggests that increasing MK-4 intake by 1.5 mg/d led to an increase in the degree of γ-carboxylation of OC. Thus, the supplementation of low doses of vitamin K2 may favorably affect bone health in healthy postmenopausal women. It is desirable that the required amount of vitamin K be taken with daily meals.

MK-7 at 360mcg for a Year Does Not Benefit Postmenopausal Norwegian Women

Abstract

Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial.

Vitamin K2 may preserve bone strength and reduce fracture risk. In this randomised double-blind placebo-controlled trial among healthy postmenopausal Norwegian women, 1 year supplementation of vitamin K2 in the form of Natto capsules had no effect on bone loss rates. Japanese studies indicate that vitamin K2 (menaquinone-7 (MK-7)) intake may preserve bone strength, but this has not been documented in Europeans. The aim of this study was to assess the effect of MK-7 on bone mineral density (BMD) changes in postmenopausal Norwegian women.
Three hundred thirty-four healthy women between 50 and 60 years, 1-5 years after menopause, were recruited to a randomised double-blind placebo-controlled trial. The participants were randomly assigned into two groups, one receiving 360 microg MK-7 in the form of Natto capsules and the other the same amount of identical-looking placebo capsules containing olive oil. BMD was measured at total hip, femoral neck, lumbar spine and total body at baseline and 12 months together with serum levels of bone-specific alkaline phosphatase, Crosslaps, total osteocalcin (N-mid OC), carboxylated (cOC) and under-carboxylated osteocalcin (ucOC).
After 12 months, there were no statistical differences in bone loss rates between the groups at the total hip or any other measurement site. Serum levels of cOC increased and ucOC decreased in the treatment versus the placebo group (p < 0.001).
MK-7 taken as Natto over 1 year reduced serum levels of ucOC but did not influence bone loss rates in early menopausal women.

Emaus N, Gjesdal CG, Almås B, Christensen M…
Osteoporos Int Oct 2010
PMID: 19937427


360mcg is a fairly high dose, and they took it for a good long time. This is very disappointing  for MK-7.

Vitamin K2 MK-7 Decreases Bone Loss in Postmenopausal Women

Abstract

Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women.

We have investigated whether low-dose vitamin K2 supplements (menaquinone-7, MK-7) could beneficially affect bone health. Next to an improved vitamin K status, MK-7 supplementation significantly decreased the age-related decline in bone mineral density and bone strength. Low-dose MK-7 supplements may therefore help postmenopausal women prevent bone loss.
Despite contradictory data on vitamin K supplementation and bone health, the European Food Safety Authorities (EFSA) accepted the health claim on vitamin K’s role in maintenance of normal bone. In line with EFSA’s opinion, we showed that 3-year high-dose vitamin K1 (phylloquinone) and K2 (short-chain menaquinone-4) supplementation improved bone health after menopause. Because of the longer half-life and greater potency of the long-chain MK-7, we have extended these investigations by measuring the effect of low-dose MK-7 supplementation on bone health.
Healthy postmenopausal women (n = 244) received for 3 years placebo or MK-7 (180 μg MK-7/day) capsules. Bone mineral density of lumbar spine, total hip, and femoral neck was measured by DXA; bone strength indices of the femoral neck were calculated. Vertebral fracture assessment was performed by DXA and used as measure for vertebral fractures. Circulating uncarboxylated osteocalcin (ucOC) and carboxylated OC (cOC) were measured; the ucOC/cOC ratio served as marker of vitamin K status. Measurements occurred at baseline and after 1, 2, and 3 years of treatment.
MK-7 intake significantly improved vitamin K status and decreased the age-related decline in BMC and BMD at the lumbar spine and femoral neck, but not at the total hip. Bone strength was also favorably affected by MK-7. MK-7 significantly decreased the loss in vertebral height of the lower thoracic region at the mid-site of the vertebrae.
MK-7 supplements may help postmenopausal women to prevent bone loss. Whether these results can be extrapolated to other populations, e.g., children and men, needs further investigation.

Knapen MH, Drummen NE, Smit E, Vermeer C…
Osteoporos Int Sep 2013
PMID: 23525894

Review: Vitamin K1 and MK-4 Reduce Bone Loss

Abstract

Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials.

Observational and some experimental data suggest that low intake of vitamin K may be associated with an increased risk of fracture.
To assess whether oral vitamin K (phytonadione and menaquinone) supplementation can reduce bone loss and prevent fractures.
The search included the following electronic databases: MEDLINE (1966 to June 2005), EMBASE (1980 to June 2005), the Cochrane Library (issue 2, 2005), the ISI Web of Science (1945 to June 2005), the National Research Register (inception to the present), Current Controlled Trials, and the Medical Research Council Research Register.
Randomized controlled trials that gave adult participants oral phytonadione and menaquinone supplements for longer than 6 months were included in this review.
Four authors extracted data on changes in bone density and type of fracture. All articles were double screened and double data extracted.
Thirteen trials were identified with data on bone loss, and 7 reported fracture data. All studies but 1 showed an advantage of phytonadione and menaquinone in reducing bone loss. All 7 trials that reported fracture effects were Japanese and used menaquinone. Pooling the 7 trials with fracture data in a meta-analysis, we found an odds ratio (OR) favoring menaquinone of 0.40 (95% confidence interval [CI], 0.25-0.65) for vertebral fractures, an OR of 0.23 (95% CI, 0.12-0.47) for hip fractures, and an OR of 0.19 (95% CI, 0.11-0.35) for all nonvertebral fractures.
This systematic review suggests that supplementation with phytonadione and menaquinone-4 reduces bone loss. In the case of the latter, there is a strong effect on incident fractures among Japanese patients.

Cockayne S, Adamson J, Lanham-New S, Shearer MJ…
Arch. Intern. Med. Jun 2006
PMID: 16801507

Review: Vitamin K and Bone Health

Abstract

Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health.

Vitamin K occurs in nature as a series of compounds with a common 2-methyl- 1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. They comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains. The major dietary source to humans is phylloquinone for which the chief food contributors are green, leafy vegetables followed by certain vegetable oils (soybean, rapeseed and olive oils). Recent analyses by high pressure liquid chromatography are now providing a wide-ranging database of phylloquinone in foods. Menaquinones are found in moderate concentrations in only a few foods such as cheeses (MK-8 and MK-9). A wider spectrum of MKs is synthesized by the gut microflora, and their intestinal absorption probably accounts for most of the hepatic stores, particularly those with very long side chains (MKs-10-13) synthesized by members of the genus Bacteroides. The site of absorption of floral MKs is not known, but reasonable concentrations are found in the terminal ileum where bile salt-mediated absorption is possible. Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small and predominantly MKs-7-13. The hepatic reserves of phylloquinone (approximately 10% of the total) are labile and turn over at a faster rate than menaquinones. Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. A majority (approximately 60-70%) of the daily dietary intake of phylloquinone is lost to the body by excretion, which emphasizes the need for a continuous dietary supply to maintain tissue reserves.

Shearer MJ, Bach A, Kohlmeier M
J. Nutr. Apr 1996
PMID: 8642453 | Free Full Text


At the present time the human requirements for vitamin K are based solely on its classical function in coagulation being listed as a Recommended Dietary Allowance (RDA) in the United States (Suttie 1992) and a Safe and Adequate Intake in the United Kingdom (Department of Health Report 1991). In both cases these requirements were set at a value of 1 mcg/kg/d. If, as argued by Vermeer et al. and Kohlmeier et al. in this volume, vitamin K is important to bone health and its requirements for this bone function are greater than for its hepatic function, a great challenge to researchers and future committees alike is to determine whether these putative extra demands can be quantified more precisely. Finally, it should be noted that the concept of reexamining the optimal intake of a vitamin with respect to the extra health benefits, which may be conferred by giving amounts over and above those required to protect against the originally discovered deficiency disease, is not new. There is already a recognition of the newer and often unexpected roles played by several other vitamins including in some cases the beneficial effects of extra intakes (Sauberlich and Machlin 1992).