Category Archives: Vitamin E

Vitamin E with Tocotrienols is an Anabolic Bone Agent in Nicotine Treated Rats

Abstract

Effects of palm vitamin e on bone-formation-related gene expression in nicotine-treated rats.

The study determines the effects of palm vitamin E on the gene expression of bone-formation-related genes in nicotine-treated rats. Male rats were divided into three groups: normal saline olive oil (NSO), nicotine olive oil (NO), and nicotine palm vitamin E (NE). The treatment was carried out in 2 phases. During the first 2 months, the NSO group received normal saline while the NO and NE groups received nicotine 7 mg/kg, 6 days a week, intraperitoneally. The following 2 months, normal saline and nicotine administration was stopped and was replaced with oral supplementation of olive oil for the NSO and NO groups and oral supplementation of palm vitamin E (60 mg/kg) for the NE group. Both femurs were harvested to determine the gene expression of bone morphogenetic protein-2 (BMP-2), Osterix (OSX), and Runt-related transcription factor 2 (RUNX2). Nicotine significantly downregulated the gene expression. This effect was reversed by palm vitamin E treatment. In conclusion, palm vitamin E may play a role in osteoblast differentiation and can be considered as an anabolic agent to treat nicotine-induced osteoporosis.

Abukhadir SS, Mohamed N, Makpol S, Muhammad N
Evid Based Complement Alternat Med 2012
PMID: 23049610 | Free Full Text


They used “Palm Vitamin E” in this study. Palm typically contains a high amount of Tocotrienols.

Vitamin E is an important fat-soluble vitamin with antioxidant properties. Of the two types of vitamin E, tocopherol is found in vegetable oils such as soy oil whereas tocotrienol is abundant in palm oil [7]. Previous studies have confirmed the beneficial effects of palm-oil-derived cotrcotrienol in several experimental osteoporosis; ovariectomized rats [8], steroid-induced rats [9], ferric-nitrilotriacetate-induced rats [10], and nicotine-induced rats [11, 12]. Furthermore, recent study has shown that supplementation of palm vitamin E, especially gamma isomer, can improve bone structural and biomechanical properties of normal male rats. Therefore, palm vitamin E has the potential to be used as an anabolic agent [13].

 

Vitamin E Prevents Bone Loss in Ovariectomized Rats

Abstract

Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model.

Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV) and trabecular number (Tb.N) and an increase in trabecular separation (Tb.S). The increase in osteoclast surface (Oc.S) and osteoblast surface (Ob.S) in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.

Muhammad N, Luke DA, Shuid AN, Mohamed N…
Evid Based Complement Alternat Med 2012
PMID: 23118785 | Free Full Text

Tocotrienols Stimulate Bone Formation in Rats

Abstract

Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in sprague-dawley male rats after nicotine cessation.

This study was conducted to determine the effectiveness of three forms of vitamin E supplements following nicotine treatment on bone histomorphometric parameters in an adult male rat model. Rats were divided into seven groups: baseline (B, killed without treatment), control (C, normal saline for 4 months), nicotine (N, nicotine for 2 months), nicotine cessation (NC), tocotrienol-enhanced fraction (TEF), gamma-tocotrienol (GTT), and alpha-tocopherol (ATF). Treatments for the NC, TEF, GTT, and ATF groups were performed in two phases. For the first 2 months they were given nicotine (7 mg/kg), and for the following 2 months nicotine administration was stopped and treatments with respective vitamin E preparations (60 mg/kg) were commenced except for the NC group, which was allowed to recover without treatment. Rats in the N and NC groups had lower trabecular bone volume, mineral appositional rate (MAR), and bone formation rate (BFR/BS) and higher single labeled surface and osteoclast surface compared to the C group. Vitamin E treatment reversed these nicotine effects. Both the TEF and GTT groups, but not the ATF group, had a significantly higher trabecular thickness but lower eroded surface (ES/BS) than the C group. The tocotrienol-treated groups had lower ES/BS than the ATF group. The GTT group showed a significantly higher MAR and BFR/BS than the TEF and ATF groups. In conclusion, nicotine induced significant bone loss, while vitamin E supplements not only reversed the effects but also stimulated bone formation significantly above baseline values. Tocotrienol was shown to be slightly superior compared to tocopherol. Thus, vitamin E, especially GTT, may have therapeutic potential to repair bone damage caused by chronic smoking.

Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S…
Calcif. Tissue Int. Jan 2009
PMID: 19020790

Vitamin E Does Not Improve Bone Density in Rats

Abstract

The role of vitamin E in reversing bone loss.

A positive correlation between intake of antioxidants including vitamins E and C on bone mass has been established by a number of investigators. The present study was conducted to evaluate the extent to which higher doses of vitamin E than normal dose (75 IU per kg diet) can reverse bone loss in aged osteopenic orchidectomized male rats.
Forty 12-month old male Sprague- Dawley rats were either sham-operated (Sham) or orchidectomized (Orx), and fed control diet for 120 days to establish bone loss. Thereafter, rats were assigned to their corresponding treatment groups (n= 10 per group): Sham and one Orx groups received 75 IU vitamin E and served as controls, and the other two Orx groups received either 250 or 500 IU vitamin E per kg diet for 90 days.
Higher doses of vitamin E did not improve bone mineral density (BMD) or content (BMC) of whole body, femur and lumbar vertebra or alter the orchidectomy-induced deterioration of trabecular microarchitecture of the distal femur metaphysis in comparison with Orx controls that received adequate vitamin E. Biochemical markers of bone formation and bone resorption, i.e. serum osteocalcin and urinary deoxypyridinoline crosslinks, were also unaffected by vitamin E supplementation.
Overall, the findings of the present study suggest that supplemental doses of vitamin E do not increase BMD values in male rat model of osteoporosis. However, human studies are needed to confirm the population findings indicating that individuals with higher vitamin E intake have higher bone mass.

Chai SC, Wei CI, Brummel-Smith K, Arjmandi BH
Aging Clin Exp Res Dec 2008
PMID: 19179835

Vitamin E Prevents Steroid-Induced Bone Loss in Rabbits

Abstract

Vitamin E prevents steroid-induced osteonecrosis in rabbits.

Prevention of osteonecrosis after corticosteroid administration would be important. We examined the potential of vitamin E (alpha-tocopherol) to reduce the incidence of corticosteroid-induced osteonecrosis in an animal model.
Japanese white rabbits were divided into 2 groups; the control group was fed a normal diet and the experimental group was fed alpha-tocopherol-supplemented diet in which alpha-tocopherol (600 mg/kg diet) was added to the normal diet. To induce osteonecrosis, high-dose methylprednisolone acetate (MPSL) (20 mg/kg body weight) was injected once into the right gluteus medius muscle of all rabbits. 4 weeks after the injection of MPSL, the presence or absence of osteonecrosis of bilateral femurs was examined histopathologically. The tocopherol/cholesterol ratios were calculated. The plasma levels of thiobarbituric acid-reactive substances (TBARS) were measured.
Alpha-tocopherol-supplemented diet reduced the incidence of osteonecrosis, which developed in 14 of 20 rabbits in the control group and 5 of 21 rabbits in the experimental group (p = 0.004). The tocopherol/cholesterol ratio was higher in the experimental group than in the control group after the alpha-tocopherol administration. The plasma TBARS level was lower in the experimental group than in the control group at 4 weeks after the MPSL administration.
Our findings may offer a new approach for the prevention of corticosteroid-induced osteonecrosis.

Kuribayashi M, Fujioka M, Takahashi KA, Arai Y…
Acta Orthop Feb 2010
PMID: 20146637  | PMID: 20170436Free Full Text

Tocotrienols Inhibits Bone Resorption In Vitro

Abstract

α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity.

Vitamin E, an essential nutrient with powerful antioxidant activity, is the mixture of two classes of compounds, tocopherols (TPs) and tocotrienols (TTs). Although TTs exhibit better bone protective activity than α-TP, the underlying mechanism is poorly understood. In this study, we investigated whether α-TT and α-TP can modulate osteoclastic bone resorption. We found that α-TT but not α-TP inhibits osteoclastogenesis in coculture of osteoblasts and bone marrow cells induced by either IL-1 or combined treatment with 1α,25(OH)(2) vitamin D(3) and prostaglandin E(2). In accordance with this, only α-TT inhibited receptor activator of NF-κB ligand (RANKL) expression in osteoblasts. In addition, α-TT but not α-TP inhibited RANKL-induced osteoclast differentiation from precursors by suppression of c-Fos expression, possibly through inhibiting ERK and NF-κB activation. This anti-osteoclastogenic effect was reversed when c-Fos or an active form of NFATc1, a critical downstream of c-Fos during osteoclastogenesis, was overexpressed. Furthermore, only α-TT reduced bone resorbing activity of mature osteoclasts without affecting their survival. Overall, our results demonstrate that α-TT but not α-TP has anti-bone resorptive properties by inhibiting osteoclast differentiation and activation, suggesting that α-TT may have therapeutic value for treating and preventing bone diseases characterized by excessive bone destruction.

Ha H, Lee JH, Kim HN, Lee ZH
Biochem. Biophys. Res. Commun. Mar 2011
PMID: 21352805

Vitamin E Reverses Nicotine-Induced Bone Resorption in Rats

Abstract

Vitamin E reversed nicotine-induced toxic effects on bone biochemical markers in male rats.

Vitamin E is beneficial in restoring bone histomorphometric parameters in nicotine-treated rats. This study determined the effectiveness of 3 forms of vitamin E in restoring bone metabolism in nicotine-treated rats.
Thirty-five male Sprague-Dawley rats were divided into 5 groups: (1) control (C), (2) nicotine cessation (NC), (3) α-tocopherol (ATF), (4) tocotrienol-enhanced fraction (TEF) and (5) γ-tocotrienol (GTT). Treatment was carried out for 4 months. The control group was administered normal saline and olive oil throughout the treatment period while treatment for groups 2-5 was performed in 2 phases. In the first phase, the groups received nicotine 7 mg/kg intraperitoneally for 2 months. The following 2 months, group 2 received normal saline and olive oil while groups 3-5 received ATF, TEF or GTT, 60 mg/kg orally. Pre-treatment and post-treatment serum was collected for bone biochemical marker measurement using the ELISA method.
Nicotine increased serum bone-resorbing cytokines (interleukin-1 and interleukin-6) and the bone resorption marker pyridinoline (PYD) while reducing the bone formation marker osteocalcin after 2 months of nicotine treatment. The parameters failed to improve after nicotine was stopped for 2 months. Supplementation with the 3 forms of vitamin E improved the parameters, i.e. reduced the cytokines and pyridinoline as well as increased the osteocalcin. In addition, the TEF and GTT groups had a higher level of osteocalcin than the control group.
Nicotine impaired bone metabolism and cessation of nicotine treatment did not reverse the effects. Vitamin E, especially the tocotrienols, restored bone metabolism that was impaired due to nicotine.

Norazlina M, Hermizi H, Faizah O, Nazrun AS…
Arch Med Sci Aug 2010
PMID: 22371792 | Free Full Text

Antioxidants No Benefit in Population Study, Except Vitamin C with HRT

Abstract

Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative.

Antioxidant defenses are one possible mechanism for decreasing oxidative damage and its potentially negative effects on age-related bone mass.
This study cross-sectionally examined whether higher dietary intakes, total intakes, and serum concentrations of antioxidants may be associated with higher bone mineral density (BMD).
Total hip (and subregions), spine, and total-body BMDs were measured in 11,068 women aged 50-79 y enrolled in the Women’s Health Initiative Observational Study and Clinical Trial at 3 clinics. Antioxidant intakes from diet (vitamin A, retinol, beta-carotene, vitamin C, vitamin E, and selenium) were estimated by using a self-reported food-frequency questionnaire. Antioxidants from supplements were estimated with an interviewer-administered questionnaire. A random subset (n = 379) had serum concentrations of retinol, carotenoids, and tocopherols measured.
After adjustment for important BMD-related covariates, increasing intakes of antioxidants were not independently associated with BMD. A significant interaction effect was observed between intake of total vitamin C (lower three-fourths compared with highest one-fourth) and use of hormone therapy (HT) (P < 0.01). The beneficial effect of current HT use on femoral neck BMD appeared to be greater in women with higher concentrations of total vitamin C. This interaction was also significant for total-body (P < 0.045), spine (P = 0.03), and total-hip BMDs (P = 0.029).
Our results do not support independent associations between dietary intake, total intake, or serum concentrations of antioxidants and BMD in women participating in the Women’s Health Initiative. The extent to which HT use may interact with vitamin C intake and BMD warrants further exploration.

Wolf RL, Cauley JA, Pettinger M, Jackson R…
Am. J. Clin. Nutr. Sep 2005
PMID: 16155271 | Free Full Text

Vitamins C + E, or Exercise, Prevent Bone Loss in Women

Abstract

Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study.

We determined the effect of antioxidants and resistance training on bone mineral density of postmenopausal women. After 6 months, we observed a significant decrease in the lumbar spine BMD of the placebo group while other groups remained stable. Antioxidants may offer protection against bone loss such as resistance training.
The purpose of this pilot study was to determine the effects of antioxidant supplements combined to resistance training on bone mineral density (BMD) in healthy elderly women.
Thirty-four postmenopausal women (66.1 +/- 3.3 years) were randomized in four groups (placebo, n = 7; antioxidants, n = 8; exercise and placebo, n = 11; and exercise and antioxidants, n = 8). The 6-month intervention consisted in antioxidant supplements (600 mg vitamin E and 1,000 mg vitamin C daily) or resistance exercise (3x/week). Femoral neck and lumbar spine BMD (DXA) and dietary intakes (3-day food record) were measured before and after the intervention. A repeated measure ANOVA and non-parametric Mann-Whitney U tests were used.
We observed a significant decrease in the placebo group for lumbar spine BMD (pre, 1.01 +/- 0.17 g/cm(2); post, 1.00 +/- 0.16 g/cm(2); P < 0.05 respectively) while it remained stable in all other groups. No changes were observed for femoral neck BMD.
Antioxidant vitamins may offer some protection against bone loss in the same extent as resistance exercise although combining both does not seem to produce additional effects. Our results suggest to further investigate the impact of antioxidant supplements on the prevention of osteoporosis.

Chuin A, Labonté M, Tessier D, Khalil A…
Osteoporos Int Jul 2009
PMID: 19020919

Tocotrienols More Effective Than Calcium?

Abstract

Palm tocotrienol supplementation enhanced bone formation in oestrogen-deficient rats

Postmenopausal osteoporosis is the commonest cause of osteoporosis. It is associated with increased free radical activity induced by the oestrogen-deficient state. Therefore, supplementation with palm-oil-derived tocotrienols, a potent antioxidant, should be able to prevent this bone loss. Our earlier studies have shown that tocotrienol was able to prevent and even reverse osteoporosis due to various factors, including oestrogen deficiency. In this study we compared the effects of supplementation with palm tocotrienol mixture or calcium on bone biomarkers and bone formation rate in ovariectomised (oestrogen-deficient) female rats. Our results showed that palm tocotrienols significantly increased bone formation in oestrogen-deficient rats, seen by increased double-labeled surface (dLS/Bs), reduced single-labeled surface (sLS/BS), increased mineralizing surface (MS/BS), increased mineral apposition rate (MAR), and an overall increase in bone formation rate (BFR/BS). These effects were not seen in the group supplemented with calcium. However, no significant changes were seen in the serum levels of the bone biomarkers, osteocalcin, and cross-linked C-telopeptide of type I collagen, CTX. In conclusion, palm tocotrienol is more effective than calcium in preventing oestrogen-deficient bone loss. Further studies are needed to determine the potential of tocotrienol as an antiosteoporotic agent.

Soelaiman IN, Ming W, Abu Bakar R, Hashnan NA…
Int J Endocrinol. 2012
PMID: 23150728


Even though this is an animal study, it is impressive that tocotrienols were more effective than calcium.