Category Archives: Vitamin D

Review: Resveratrol + Genistein + Quercetin + Vitamin D Synergy

Abstract

Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis.

Resveratrol, a phytoalexin, has gained much attention recently due to its effects on sirtuins. While the anti-cancer properties of resveratrol have been extensively investigated, the anti-adipogenic and osteogenic effects of resveratrol are also gaining considerable interest. The finding that resveratrol supplementation mimics caloric restriction prompted researchers to study the effects of resveratrol on lipid metabolism. Mesenchymal stem cells are the precursors for both adipocytes and osteoblasts. In the aging population, differentiation to adipocytes dominates over the differentiation to osteoblasts in bone marrow, contributing to the increased tendency for fractures to occur in the elderly. Thus, an inverse relationship exists between adipocytes and osteoblasts in the bone marrow. Resveratrol acts on several molecular targets in adipocytes and osteoblasts leading to a decrease in adipocyte number and size and an increase in osteogenesis. Furthermore, resveratrol in combination with genistein and quercetin synergistically decreased adipogenesis in murine and human adipocytes. A recent in vivo study showed that phytochemicals including resveratrol in combination with vitamin D prevented weight gain and bone loss in a postmenopausal rat model. Therefore, combinations of resveratrol with other phytochemicals may lead to potential novel potent therapies for both obesity and osteoporosis.

Rayalam S, Della-Fera MA, Baile CA
Mol Nutr Food Res Aug 2011
PMID: 21538845

Vitamin D + Genistein + Quercetin + Resveratrol in Ovariectomized Rats

Abstract

Preventing bone loss and weight gain with combinations of vitamin D and phytochemicals.

Vitamin D and certain natural compounds have been shown to regulate both lipid metabolism and bone formation. Treatments that prevent or reverse age-related increase in bone marrow adiposity could both increase new bone formation and inhibit bone destruction. We tested the hypothesis that dietary supplementation with combinations of vitamin D and phytochemicals inhibits bone loss and decreases adiposity to a greater extent than control or vitamin D-alone diets. Aged ovariectomized female rats (12 months old, n=50, initial body weight=240 g) were given control (AIN-93M diet), vitamin D (2,400 IU/kg), or vitamin D plus resveratrol (16, 80, or 400 mg/kg of diet [low, medium, and high dose, respectively]), quercetin (80, 400, or 2,000 mg/kg of diet), and genistein (64, 256, or 1,040 mg/kg of diet) for 8 weeks. The high-dose treatment (vitamin D+400 mg/kg resveratrol+2,000 mg/kg quercetin+1,040 mg/kg genistein) reduced body weight gain (P<.05) and the fat pad weights (P<.05). This treatment also increased the serum concentration of insulin-like growth factor-1 (P<.05) and the bone mineral content of the femur. Micro-computed tomography and histomorphometric analyses indicated that the high-dose treatment prevented loss of trabecular bone (P<.05) and reduced marrow adipocytes (P<.001) and osteoclasts (P<.05) compared with the control and vitamin D alone (P<.05). We conclude that aged ovariectomized female rats supplemented with vitamin D combined with genistein, quercetin, and resveratrol had improved bone mineral density and reduced body weight gain and a significant decrease in bone marrow adipocytes. The synergistic effects of a combination of phytochemicals with vitamin D may be effective in reducing bone loss and weight gain after menopause.

Lai CY, Yang JY, Rayalam S, Della-Fera MA…
J Med Food Nov 2011
PMID: 21663481

Vitamin D3 + K2 + Sr + Mg + DHA as Effective as Bisphosphonates in Women

Abstract

Combination of Micronutrients for Bone (COMB) Study: bone density after micronutrient intervention.

Along with other investigations, patients presenting to an environmental health clinic with various chronic conditions were assessed for bone health status. Individuals with compromised bone strength were educated about skeletal health issues and provided with therapeutic options for potential amelioration of their bone health. Patients who declined pharmacotherapy or who previously experienced failure of drug treatment were offered other options including supplemental micronutrients identified in the medical literature as sometimes having a positive impact on bone mineral density (BMD). After 12 months of consecutive supplemental micronutrient therapy with a combination that included vitamin D(3), vitamin K(2), strontium, magnesium and docosahexaenoic acid (DHA), repeat bone densitometry was performed. The results were analyzed in a group of compliant patients and demonstrate improved BMD in patients classified with normal, osteopenic and osteoporotic bone density. According to the results, this combined micronutrient supplementation regimen appears to be at least as effective as bisphosphonates or strontium ranelate in raising BMD levels in hip, spine, and femoral neck sites. No fractures occurred in the group taking the micronutrient protocol. This micronutrient regimen also appears to show efficacy in individuals where bisphosphonate therapy was previously unsuccessful in maintaining or raising BMD. Prospective clinical trials are required to confirm efficacy.

Genuis SJ, Bouchard TP
J Environ Public Health 2012
PMID: 22291722 | Free Full Text

Berberine + D3 + K1 + Hop Rho Iso-α-Acids Improves Bone Profile in Postmenopausal Women

Abstract

Nutritional supplementation of hop rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produces a favorable bone biomarker profile supporting healthy bone metabolism in postmenopausal women with metabolic syndrome.

Metabolic syndrome poses additional risk for postmenopausal women who are already at risk for osteoporosis. We hypothesized that a nutritional supplement containing anti-inflammatory phytochemicals and essential bone nutrients would produce a favorable bone biomarker profile in postmenopausal women with metabolic syndrome. In this 14-week, randomized trial, 51 women were instructed to consume a modified Mediterranean-style, low-glycemic-load diet and to engage in aerobic exercise. Those in the intervention arm (n = 25) additionally received 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D₃, and 500 μg vitamin K₁ twice daily. Forty-five women completed the study. Baseline nutrient intake did not differ between arms. Compared with baseline, the intervention arm exhibited an approximate 25% mean decrease (P < .001) in serum osteocalcin (indicative of bone turnover), whereas the placebo arm exhibited a 21% increase (P = .003). Serum 25-hydroxyvitamin D increased 23% (P = .001) in the intervention arm and decreased 12% (P = .03) in the placebo arm. The between-arm differences for osteocalcin and 25-hydroxyvitamin D were statistically significant. Serum insulin-like growth factor I was statistically increased in both arms, but the between-arm differences were not statistically significant. Subanalysis showed that among those in the highest tertile of baseline insulin-like growth factor I, the intervention arm exhibited a significant increase in amino-terminal propeptide of type I collagen, whereas the placebo arm showed a significant decrease at 14 weeks. Treatment with rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produced a more favorable bone biomarker profile indicative of healthy bone metabolism in postmenopausal women with metabolic syndrome.

Lamb JJ, Holick MF, Lerman RH, Konda VR…
Nutr Res May 2011
PMID: 21636012

Berberine + D3 + K1 + Hop Rho Iso-α-Acids Improve Bone in Postmenopausal Women

Abstract

Hop rho iso-alpha acids, berberine, vitamin D3 and vitamin K1 favorably impact biomarkers of bone turnover in postmenopausal women in a 14-week trial.

Osteoporosis is a major health issue facing postmenopausal women. Increased production of pro-inflammatory cytokines resulting from declining estrogen leads to increased bone resorption. Nutrition can have a positive impact on osteoporosis prevention and amelioration. The objective of this study was to investigate the impact of targeted phytochemicals and nutrients essential for bone health on bone turnover markers in healthy postmenopausal women. In this 14-week, single-blinded, 2-arm placebo-controlled pilot study, all women were instructed to consume a modified Mediterranean-style low-glycemic-load diet and to engage in limited aerobic exercise; 17 randomized to the placebo and 16 to the treatment arm (receiving 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D(3) and 500 microg vitamin K(1), twice daily). Thirty-two women completed the study. Baseline nutrient intake did not differ between arms. At 14 weeks, the treatment arm exhibited an estimated 31% mean reduction (P = 0.02) in serum osteocalcin (a marker of bone turnover), whereas the placebo arm exhibited a 19% increase (P = 0.03) compared to baseline. Serum 25-hydroxyvitamin D (25(OH)D) increased by 13% (P = 0.24) in the treatment arm and decreased by 25% (P < 0.01) in the placebo arm. The between-arm differences for OC and 25(OH)D were statistically significant. Serum IGF-I was increased in both arms, but the increase was more significant in the treatment arm at 14 weeks (P < 0.01). Treatment with hop rho iso-alpha acids, berberine sulfate trihydrate, vitamin D(3) and vitamin K(1) produced a more favorable bone biomarker profile that supports a healthy bone metabolism.

Holick MF, Lamb JJ, Lerman RH, Konda VR…
J. Bone Miner. Metab. May 2010
PMID: 20024591

Review: Calcium, Vitamin D, K, Phytoestrogens

Abstract

Diet, nutrition, and bone health.

Osteoporosis is a debilitating disease that affects many older people. Fragility fractures are the hallmark of osteoporosis. Although nutrition is only 1 of many factors that influence bone mass and fragility fractures, there is an urgent need to develop and implement nutritional approaches and policies for the prevention and treatment of osteoporosis that could, with time, offer a foundation for population-based preventive strategies. However, to develop efficient and precocious strategies in the prevention of osteoporosis, it is important to determine which modifiable factors, especially nutritional factors, are able to improve bone health throughout life. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients as well as bioactive food ingredients. The evidence-base to support the role of nutrients and food components in bone health ranges from very firm to scant, depending on the nutrient/component. This article initially overviews osteoporosis, including its definition, etiology, and incidence, and then provides some information on possible dietary strategies for optimizing bone health and preventing osteoporosis. The potential benefits of calcium, vitamin D, vitamin K(1), phytoestrogens, and nondigestible oligosaccharides are briefly discussed, with particular emphasis on the evidence base for their benefits to bone. It also briefly considers some of the recent findings that highlight the importance of some dietary factors for bone health in childhood and adolescence.

Cashman KD
J. Nutr. Nov 2007
PMID: 17951494 | Free Full Text

Review: Adding Calcium, Magnesium, Vitamin D, Vitamin K, Inulin, Protein, and Phytoestrogens to Foods

Abstract

Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis.

Osteoporosis is a growing global problem. The health care costs and decreased productivity and quality of life are staggering. Much research is invested in life-style approaches to build peak bone mass during growth to prevent osteoporosis as well as to treat the disease in later life. Functional foods have enjoyed a niche in bone health. Foods fortified with Ca are most popular. Other bone nutrients such as vitamin D, Mg and vitamin K are sometimes added. Future products are likely to include enhancers of Ca absorption such as inulin or whey proteins. Dietary factors that reduce urinary Ca loss (plant proteins) or suppress bone resorption (possibly phyto-oestrogens) are also gaining attention. Methodologies for evaluating the effectiveness of functional foods on bone health include measures of bone quality such as bone densitometry or measures of Ca metabolism, particularly absorption. Biochemical markers for bone turnover are less satisfactory for diet-related effects. Use of a rare isotope, 41Ca, and accelerator mass spectrometry offers a new approach for assessing the ability of functional foods to suppress bone resorption.

Weaver CM, Liebman M
Br. J. Nutr. Nov 2002
PMID: 12495464

Resistance Exercise Prevents Bone Loss During Spaceflights

Abstract

Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry.

Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the “interim resistive exercise device” (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions.

Smith SM, Heer MA, Shackelford LC, Sibonga JD…
J. Bone Miner. Res. Sep 2012
PMID: 22549960