Abstract
Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis.
Osteoporosis is a common pathological condition that influences 20 % of women over 50 years of age. This condition decreases bone strength and increases the risk of bone fracture. Naringin is a major flavonoid found in grapefruit and an active compound extracted from a Chinese herbal medicine (Rhizoma Drynariae). Studies have shown that naringin possesses many pharmacological effects. The current study evaluated the influence of naringin on osteoblastic cell differentiation and proliferation, and assessed its therapeutic effects on a rat osteoporosis model.
The proliferation, differentiation, and function of rat bone marrow stromal cells (BMSCs) were determined following treatment with various concentrations of naringin. Ovariectomy (OVX)-induced osteoporotic rats were orally administered naringin daily at low, medium, and high dosages, while a control group received PBS for 2 months. Femoral X-ray images and microCT scans were used for bone mineral density (BMD) and BV/TV (bone volume/total volume) analyses, and histological assessments of left tibiae were employed to check for changes in trabecular thickness (Tb.Th) and trabecular space (Tb.Sp) in the groups.
Naringin was effective at enhancing the proliferation and osteogenic differentiation of BMSCs, and a concentration of 10 μg/ml prompted the highest levels of osteocalcin expression among the in vitro study groups. There appeared to be a delayed response pattern of BMSCs to the naringin treatment. Naringin also effectively reversed OVX-induced bone loss via increasing BMD, bone volume, and trabecular thickness. The medium dose (300 mg/kg) appeared to be the optimal dosage for delivering satisfactory therapeutic effects.
Naringin promotes the proliferation and differentiation of BMSCs, and increases osteocalcin expression. Naringin also effectively reverses ovariectomy-induced osteoporosis in rats. The study suggests that naringin administration may represent an effective treatment for osteoporosis.
Li N, Jiang Y, Wooley PH, Xu Z…
J Orthop Sci May 2013
PMID: 23553541