Category Archives: Fish Oil

Review: Fish Oil Effects on Bone

Abstract

The impact of omega-3 fatty acids on osteoporosis.

The essential polyunsaturated fatty acids (PUFAs) comprise 2 main classes: n-6 and n-3 fatty acids. The most common source of n-6 fatty acids is linoleic acid (LA) which is found in high concentrations in various vegetable oils. Arachidonic acid (AA), the 20-carbon n-6 fatty acid, is obtained largely by synthesis from LA in the body. The n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) are found in fish and fish oils. Long-Chain polyunsaturated fatty acids (LCPUFAs) and lipid mediators derived from LCPUFAs have critical roles in the regulation of a variety of biological processes including bone metabolism. There are different mechanisms by which dietary fatty acids affect bone: effect on calcium balance, effect on osteoblastogenesis and osteoblast activity, change of membrane function, decrease in inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha), modulation of peroxisome proliferators-activated receptor gamma (PPARgamma). Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. In spite of increasing evidence of the positive effects of dietary fats on bone metabolism from animal and in vitro studies, the few studies conducted in humans do not allow us to draw a definitive conclusion on their usefulness in clinical practice.

Maggio M, Artoni A, Lauretani F, Borghi L…
Curr. Pharm. Des. 2009
PMID: 20041817

Nutrients Correlated With Bone Density

Abstract

[Validation of questionnaires for the study of food habits and bone mass].

The loss of bone mass and density is influenced by nutritional factors that act on the bone mass peak, age-related bone loss and muscle strength. The objective of the present study was to validate a food frequency questionnaire applied to estimate the relationship between food habits and bone mineral density (BMD) in a healthy adult population.
The results of the food frequency questionnaire were compared with 24-hr recall findings. Calcaneus BMD was measured by densitometry.
The validity of the questionnaire was demonstrated, with Spearman correlation coefficients of 0.014 to 0.467. The Bland-Altman test also found no differences in study variables between the two methods. Correlation analysis showed that the BMD was significantly associated with the intake of vitamin D, vitamin A, vitamin B12, folate, thiamine and iron. Total fat consumption was not associated with BMD but the intake of monounsaturated fatty acids, EPA, DHA and cholesterol showed a significant correlation.
The questionnaire evaluates the consumption of energy and nutrients with adequate validity. Its application revealed the importance for bone health of a diet rich in B-group vitamins, vitamin D, calcium, iron, monounsaturated fatty acids and n-3.

Rivas A, Romero A, Mariscal M, Monteagudo C…
Nutr Hosp
PMID: 19893861 | Free Full Text | Full Text English Translation


The full text has a very interesting chart with a list of nutrients and their correlation with bone density.

EPA + DHA Have Favorable Effect on Bone Density and Strength in Mice

Abstract

Femur EPA and DHA are correlated with femur biomechanical strength in young fat-1 mice.

Evidence suggests that n-3 polyunsaturated fatty acids (PUFA) are beneficial for maintenance of bone health and possibly bone development. This study used the fat-1 mouse, a transgenic model that synthesizes n-3 PUFA from n-6 PUFA, to determine if outcomes of bone health were correlated with n-3 PUFA in femurs. Control and fat-1 mice were fed an AIN-93G diet containing 10% safflower oil from weaning through 12 weeks of age. Femur bone mineral content (BMC) and density were determined by dual-energy X-ray absorptiometry, and biomechanical strength properties, surrogate measures of fracture risk, were measured by a materials testing system. Femur fatty acid composition was determined by gas chromatography. At 12 weeks of age, femur n-3 PUFA were higher among fat-1 mice compared to control mice. The n-6/n-3 PUFA ratio in the femur was negatively correlated with BMC (r=-.57, P=.01) and peak load at femur midpoint (r=-.53, P=.02) and femur neck (r=-.52, P=.02). Moreover, long-chain n-3 PUFA, eicosapentaenoic acid, and docosahexaenoic acid were significantly and positively correlated or displayed a trend suggesting positive correlations, with BMC and peak load. In conclusion, the results of the present study suggest that n-3 PUFA have a favorable effect on mineral accumulation and functional measures of bone in fat-1 mice at young adulthood.

Lau BY, Ward WE, Kang JX, Ma DW
J. Nutr. Biochem. Jun 2009
PMID: 18708283

Fish Oil Decreases Bone Loss in Ovariectomized Mice

Abstract

Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice.

The mechanisms of action of dietary fish oil (FO) on osteoporosis are not fully understood. This study showed FO decreased bone loss in ovariectomized mice because of inhibition of osteoclastogenesis. This finding supports a beneficial effect of FO on the attenuation of osteoporosis.
Consumption of fish or n-3 fatty acids protects against cardiovascular and autoimmune disorders. Beneficial effects on bone mineral density have also been reported in rats and humans, but the precise mechanisms involved have not been described.
Sham and ovariectomized (OVX) mice were fed diets containing either 5% corn oil (CO) or 5% fish oil (FO). Bone mineral density was analyzed by DXA. The serum lipid profile was analyzed by gas chromatography. Receptor activator of NF-kappaB ligand (RANKL) expression and cytokine production in activated T-cells were analyzed by flow cytometry and ELISA, respectively. Osteoclasts were generated by culturing bone marrow (BM) cells with 1,25(OH)2D3. NF-kappaB activation in BM macrophages was measured by an electrophoretic mobility shift assay.
Plasma lipid C16:1n6, C20:5n3, and C22:6n3 were significantly increased and C20:4n6 and C18:2n6 decreased in FO-fed mice. Significantly increased bone mineral density loss (20% in distal left femur and 22.6% in lumbar vertebrae) was observed in OVX mice fed CO, whereas FO-fed mice showed only 10% and no change, respectively. Bone mineral density loss was correlated with increased RANKL expression in activated CD4+ T-cells from CO-fed OVX mice, but there was no change in FO-fed mice. Selected n-3 fatty acids (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) added in vitro caused a significant decrease in TRACP activity and TRACP+ multinuclear cell formation from BM cells compared with selected n-6 fatty acids (linoleic acid [LA] and arachidonic acid [AA]). DHA and EPA also inhibited BM macrophage NF-kappaB activation induced by RANKL in vitro. TNF-alpha, interleukin (IL)-2, and interferon (IFN)-gamma concentrations from both sham and OVX FO-fed mice were decreased in the culture medium of splenocytes, and interleukin-6 was decreased in sham-operated FO-fed mice. In conclusion, inhibition of osteoclast generation and activation may be one of the mechanisms by which dietary n-3 fatty acids reduce bone loss in OVX mice.

Sun D, Krishnan A, Zaman K, Lawrence R…
J. Bone Miner. Res. Jul 2003
PMID: 12854830

EPA + GLA Increases Bone Density in Elderly Women

Abstract

Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis.

Recent animal work suggests that gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) enhance calcium absorption, reduce excretion and increase calcium deposition in bone. A pilot study was set up to test the interactions between calcium and GLA + EPA in humans. Sixty-five women (mean age 79.5), taking a background diet low in calcium, were randomly assigned to GLA + EPA or coconut oil placebo capsules; in addition, all received 600 mg/day calcium as the carbonate. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. Twenty-one patients were continued on treatment for a second period of 18 months, after which BMD (36 months) was measured. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific alkaline phosphatase rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different effects in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%. This pilot controlled study suggests that GLA and EPA have beneficial effects on bone in this group of elderly patients, and that they are safe to administer for prolonged periods of time.

Kruger MC, Coetzer H, de Winter R, Gericke G…
Aging (Milano) Oct 1998
PMID: 9932142

EPA + DHA, but Especially EPA, Effective in Diabetic Rats with Osteopenia

Abstract

Effect of eicosapentaenoic acid and docosahexaenoic acid on diabetic osteopenia.

To evaluate the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are polyunsaturated fatty acids, on diabetic osteopenia, we measured the bone fragility in streptozotocin-induced diabetic rats. The fragility of femur was increased in diabetic rats, which was prevented in part by EPA or DHA. Moreover, EPA prevented osteopenia even in diabetic rats fed a low zinc feed, which was a potent accelerator of diabetic osteopenia. Plasma alkaline phosphatase activity and parathyroid hormone level showed no difference between the two groups of diabetic rats with or without EPA. Urinary excretion of calcium and phosphate was increased and plasma inorganic phosphate level was high in diabetic rats, suggesting severe mineral loss. In diabetic rats fed EPA, although urinary and plasma calcium levels did not change significantly, urinary phosphate excretion and plasma inorganic phosphate concentration were slightly lowered, which suggested that EPA may have an effect in suppressing phosphate release from bones in diabetic rats. These data suggest that EPA and DHA could be effective on diabetic osteopenia, but to elucidate the precise mechanisms, further examinations will be needed.

Yamada Y, Fushimi H, Inoue T, Matsuyama Y…
Diabetes Res. Clin. Pract. Oct 1995
PMID: 8745204

Higher Omega-3, but Especially DHA, Preserve Bone in Ovariectomized Rats

Abstract

Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats.

Hypoestrogenic states escalate bone loss in animals and humans. This study evaluated the effects of the amount and ratio of dietary n-6 and n-3 polyunsaturated fatty acids (PUFAs) on bone mineral in 3-month-old sexually mature ovariectomized (OVX) Sprague-Dawley rats. For 12 weeks, the rats were fed either a high-PUFA (HP) or a low-PUFA (LP) diet with a ratio of n-6/n-3 PUFAs of 5:1 (HP5 and LP5) or 10:1 (HP10 and LP10). All diets (modified AIN-93G) provided 110.4 g/kg of fat from safflower oil and/or high-oleate safflower oil blended with n-3 PUFAs (DHASCO oil) as a source of docosahexaenoic acid (DHA). Fatty acid analyses confirmed that the dietary ratio of 5:1 significantly elevated the amount of DHA in the periosteum, marrow and cortical and trabecular bones of the femur. Dual-energy X-ray absorptiometry measurements for femur and tibia bone mineral content (BMC) and bone mineral density showed that the DHA-rich diets (HP5 and LP5) resulted in a significantly lower bone loss among the OVX rats at 12 weeks. Rats fed the LP diets displayed the lowest overall serum concentrations of the bone resorption biomarkers pyridinoline (Pyd) and deoxypyridinoline, whereas the bone formation marker osteocalcin was lowest in the HP groups. Regardless of the dietary PUFA content, DHA in the 5:1 diets (HP5 and LP5) preserved rat femur BMC in the absence of estrogen. This study indicates that the dietary ratio of n-6/n-3 PUFAs (LP5 and HP5) and bone tissue concentration of total long-chain n-3 PUFAs (DHA) minimize femur bone loss as evidenced by a higher BMC in OVX rats. These findings show that dietary DHA lowers the ratio of 18:2n-6 (linoleic acid)/n-3 in bone compartments and that this ratio in tissue correlates with reduced Pyd but higher bone alkaline phosphatase activity and BMC values that favor bone conservation in OVX rats.

Watkins BA, Li Y, Seifert MF
J. Nutr. Biochem. Apr 2006
PMID: 16102959

Fish Oil, Especially DHA, Increases Bone Density in Rats

Abstract

Is docosahexaenoic acid more effective than eicosapentaenoic acid for increasing calcium bioavailability?

Experimental animal and human studies have indicated that long chain polyunsaturated fatty acids (LCPUFA) may enhance calcium absorption, reduce urinary calcium excretion, and increase bone calcium content. In the present study, the effect of LCPUFA, as provided in evening primrose oil, fish and tuna oils, on calcium bioavailability was investigated. Growing male rats were fed a semi-synthetic diet for 6 weeks, after which calcium absorption, bone mineral density (ex vivo), bone calcium content, and bone biomechanics were measured. Calcium absorption, ex vivo bone mineral density, and bone calcium content were significantly higher in the animals fed tuna oil compared with those of a control group fed corn oil. Significant correlations were found between the docosahexaenoic acid (DHA) (22:6n-3) content of the red cell membranes and bone density and bone calcium content. DHA increased accretion of calcium in bone significantly more so than eicosapentaenoic acid (EPA) (20:5n-3).

Kruger MC, Schollum LM
Prostaglandins Leukot. Essent. Fatty Acids Nov 2005
PMID: 16154334

Fish Oil Reduces Resorption in Rats with Periodontal Disease

Abstract

Omega-3 fatty acid effect on alveolar bone loss in rats.

Gingival inflammation and alveolar bone resorption are hallmarks of adult periodontitis, elicited in response to oral micro-organisms such as Porphyromonas gingivalis. We hypothesized that omega (omega)-3 fatty acids (FA) dietary supplementation would modulate inflammatory reactions leading to periodontal disease in infected rats. Rats were fed fish oil (omega-3 FA) or corn oil (n-6 FA) diets for 22 weeks and were infected with P. gingivalis. Rats on the omega-3 FA diet exhibited elevated serum levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), documenting diet-induced changes. PCR analyses demonstrated that rats were orally colonized by P. gingivalis; increased IgG antibody levels substantiated this infection. P. gingivalis-infected rats treated with omega-3 FA had significantly less alveolar bone resorption. These results demonstrated the effectiveness of an omega-3 FA-supplemented diet in modulating alveolar bone resorption following P. gingivalis infection, and supported that omega-3 FA may be a useful adjunct in the treatment of periodontal disease.

Kesavalu L, Vasudevan B, Raghu B, Browning E…
J. Dent. Res. Jul 2006
PMID: 16798867

Statins and Fish Oil Improve Lipid in Bones

Abstract

Statins and dietary fish oils improve lipid composition in bone marrow and joints.

There have been numerous efforts to alter the lipid content of cardiovascular tissues. Although equally important, only limited information is available about musculoskeletal tissues. I characterized joint and bone marrow lipids in patients having joint replacement surgery and explored the effects of fish oils and statins on lipid composition in bone marrow and joint fluid. Joint drainage catheters were used to collect marrow lipids from 84 patients having 128 hip and knee replacements for osteoarthritis, osteonecrosis, and femoral neck fractures (osteoporosis). Statins reduced the amount of lipid by 22% in patients with osteoporosis, 26% in patients with osteoarthritis, and 41% in patients with osteonecrosis compared with pretreatment lipid levels in the same patients. Taking fish oils reduced the amount of lipid in bone marrow by 20%. Lipid profiles of disturbed marrow and joint fluid from patients who took statins or dietary fish oil showed an increase in the proportion of unsaturated fatty acids and longer-chain fatty acids relative to pretreatment profiles. The ability to change the amount and character of bone and joint lipids may have major importance for strengthening bone, reducing the severity or preventing osteonecrosis, and enhancing joint lubrication.

Pritchett JW
Clin. Orthop. Relat. Res. Mar 2007
PMID: 17496750