Category Archives: Curcumin

Curcumin Improves Bone in Transgenic Mice

Abstract

Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice.

Alzheimer’s disease and osteoporosis are often observed to co-occur in clinical practice. The present study aimed to evaluate the bone microarchitecture and bone mineral density (BMD) of the proximal tibia in APP/PS1 transgenic mice by micro-computed tomography (micro-CT), and to search for evidence that curcumin can be used to reduce bone mineral losses and treat osteoporosis after senile dementia in these transgenic mice. Three-month-old female mice were divided into the following groups (n=9 per group): wild-type mice (WT group); APP/PS1 transgenic mice (APP group); and APP/PS1 transgenic mice with curcumin treatment (APP+Cur group). Between 9 and 12 months of age, the APP+Cur group were administered curcumin orally (600ppm). CT scans of the proximal tibia were taken at 6, 9 and 12 months. At 6 months, there were little differences in the structural parameters. At 9 months, the APP groups displayed loss of bone volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and connectivity density (Conn.D) and increases in trabecular separation (Tb.Sp) and geometric degree of anisotropy (DA) (P<0.05 or P<0.01), with significant changes in the BMD parameters. At 12 months, curcumin treatment led to constant increases in the trabecular bone mass of the metaphysis and clearly improved the BMD. By the same time, we measured the TNF-α and IL-6 in the serum among the different groups at 6, 9 and 12 months by enzyme-linked immunoassay(ELISA). These results suggest that APP/PS1 transgenic mice are susceptible to osteoporosis, and that curcumin can prevent further deterioration of the bone structure and produce beneficial changes in bone turnover. The change of inflammation cytokine, including TNF-α and IL-6, may play an important role in the mechanisms of action of curcumin, but the detail mechanism remains unknown.

Yang MW, Wang TH, Yan PP, Chu LW…
Phytomedicine Jan 2011
PMID: 20637579

Curcumin Inhibits Rat Osteoblast Cells In Vitro

Abstract

Curcumin inhibits the proliferation and mineralization of cultured osteoblasts.

The effects of curcumin, which is an important constituent of rhizomes of the plant Curcuma longa Linn, on the metabolism of osteoblasts were examined in cultures of rat calvarial osteoblastic cells (ROB cells). The proliferation of cells was markedly inhibited upon exposure of cells to curcumin at 5×10(-6) to 1×10(-5) M. Curcumin at 1×10(-5) M did not induce apoptosis in ROB cells but arrested cells at the G1 phase of the cell cycle. In addition, curcumin stimulated the expression of mRNA for p21(WAF1/CIP1), which inhibits the activity of cyclin-dependent kinases, and inhibited the phosphorylation of histone H1. Furthermore, curcumin reduced the rate of deposition of calcium and the formation of mineralized nodules. Our results indicate that curcumin might inhibit the proliferation and mineralization of osteoblastic cells through the expression of p21(WAF1/CIP1).

Notoya M, Nishimura H, Woo JT, Nagai K…
Eur. J. Pharmacol. Mar 2006
PMID: 16476424

Turmeric Inhibits Osteoclasts in Rat Model of Rheumatoid Arthritis

Abstract

Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis.

Scientific evidence is lacking for the antiarthritic efficacy of turmeric dietary supplements that are being promoted for arthritis treatment. Therefore, we undertook studies to determine the antiarthritic efficacy and mechanism of action of a well-characterized turmeric extract using an animal model of rheumatoid arthritis (RA).
The composition of commercial turmeric dietary supplements was determined by high-performance liquid chromatography. A curcuminoid-containing turmeric extract similar in composition to these supplements was isolated and administered intraperitoneally to female Lewis rats prior to or after the onset of streptococcal cell wall-induced arthritis. Efficacy in preventing joint swelling and destruction was determined clinically, histologically, and by measurement of bone mineral density. Mechanism of action was elucidated by analysis of turmeric’s effect on articular transcription factor activation, microarray analysis of articular gene expression, and verification of the physiologic effects of alterations in gene expression.
A turmeric fraction depleted of essential oils profoundly inhibited joint inflammation and periarticular joint destruction in a dose-dependent manner. In vivo treatment prevented local activation of NF-kappaB and the subsequent expression of NF-kappaB-regulated genes mediating joint inflammation and destruction, including chemokines, cyclooxygenase 2, and RANKL. Consistent with these findings, inflammatory cell influx, joint levels of prostaglandin E(2), and periarticular osteoclast formation were inhibited by turmeric extract treatment.
These translational studies demonstrate in vivo efficacy and identify a mechanism of action for a well-characterized turmeric extract that supports further clinical evaluation of turmeric dietary supplements in the treatment of RA.

Funk JL, Frye JB, Oyarzo JN, Kuscuoglu N…
Arthritis Rheum. Nov 2006
PMID: 17075840 | Free Full Text

Curcumin Inhibits Osteoclasts in Mouse Cells

Abstract

Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis.

Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.

Bharti AC, Takada Y, Aggarwal BB
J. Immunol. May 2004
PMID: 15128775 | Free Full Text

Curcumin Helps Suppress TNF-alpha and MMP-13 In Vitro

Abstract

Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes.

Tumor necrosis factor alpha (TNF-alpha), a major proinflammatory cytokine, induces arthritic joint inflammation and resorption of cartilage by matrix metalloproteinase-13 (MMP-13). RNA for MMP-13 is increased in human arthritic femoral cartilage. Mechanisms of this induction were investigated by pretreating primary human osteoarthritic (OA) femoral head chondrocytes or chondrosarcoma cells with the potential inhibitors of TNF-alpha signal transduction and downstream target transcription factors followed by stimulation with TNF-alpha and analysis of MMP-13 RNA/protein. TNF-alpha rapidly activated phosphorylation of extracellular signal-regulated kinases (ERKs), p38, and c-jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinases in human chondrocytes. Inhibitors of ERK (U0126, PD98059, and ERK1/2 antisense phosphorothioate oligonucleotide), JNK (SB203580, SP600125, and curcumin), and p38 (SB203580 and SB202190) pathways down-regulated the TNF-stimulated expression of MMP-13. Inhibitors of the transcription factors AP-1 (nordihydroguaiaretic acid, NDGA) and NF-kappaB (curcumin, proteasome inhibitors, and Bay-11-7085) suppressed TNF-alpha-induced MMP-13 expression in primary chondrocytes and SW1353 cells. These results suggest that induction of the MMP-13 gene by TNF-alpha is mediated by ERK, p38, and JNK MAP kinases as well as AP-1 and NF-kappaB transcription factors. Blockade of TNF-alpha signaling and its target transcription factors by the approaches tested here may be beneficial for reducing cartilage breakdown by MMP-13 in arthritis.

Liacini A, Sylvester J, Li WQ, Huang W…
Exp. Cell Res. Aug 2003
PMID: 12878172