Category Archives: Fruit

Cranberry Juice No Effect on Bone Quality in Rats

Abstract

Cranberry juice improved antioxidant status without affecting bone quality in orchidectomized male rats.

We reported that drinking citrus juice improves bone quality in orchidectomized senescent male rats. Because cranberry juice, like citrus, is rich in nutrients and phenolic compounds, beneficial effects of citrus juice might also be seen with cranberry juice. An experiment evaluated effect of drinking cranberry juice on bone quality in orchidectomized rats.
Thirty-two 1-year-old male rats were randomized to two groups: a sham-control group (n=8) and an orchidectomized group (n=24). The treatments for the 4 months duration of the study were SHAM, orchidectomy (ORX), ORX+drinking either 27% or 45% cranberry juice concentrate added to drinking water. At the termination of the study, the rats were euthanized, blood was collected for plasma antioxidant status and IGF-I. The femur, tibia and the 4th lumbar were evaluated for bone quality. Total calcium and magnesium concentration in the femurs were also evaluated.
ORX did not affect red blood cell (RBC)-induced hemolysis despite lowering (p<0.05) plasma antioxidant capacity; reduced (p<0.05) plasma IGF-I, femoral density, femoral strength, time-induced femoral fracture, bone mineral content, bone mineral area; numerically (p=0.07) lowered 4th lumbar density; decreased (p<0.05) trabecular connectivity, trabecular number, femoral ash; increased (p<0.05) trabecular separation in comparison to the SHAM group. Drinking cranberry juice increased (p<0.05) plasma antioxidant status, protected RBC against hemolysis, but had no positive effect on bone quality or bone mineral status.
Cranberry juice increases plasma antioxidant status without affecting bone quality.

Villarreal A, Stoecker BJ, Garcia C, Garcia K…
Phytomedicine Dec 2007
PMID: 17481874

Mediterranean Diet or Nuts May Benefit Bones

Abstract

Mediterranean diet and bone mineral density in two age groups of women.

We hypothesized that adherence to the Mediterranean diet measured as a Mediterranean diet score (MDS) has a beneficial effect on bone mineral density (BMD). For the purposes of this study, a sample of healthy women from Southern Spain was chosen. Subjects were grouped into two major groups: a first group consisted of women of reproductive age (premenopausal, pre-M) and a second group consisted of postmenopausal women (pos-M). The consumption of vegetables and fruit was found to be significantly related to BMD in both groups of subjects studied. In the pre-M group, the lipid ratio was positively associated with BMD and in pos-M women nuts intake was also associated with BMD. After implementing the analysis of covariance analysis, significant linear trends between the MDS and BMD were observed in all subjects studied. Our results indicate that a varied diet based on Mediterranean diet patterns may be beneficial in the prevention of osteoporosis.

Rivas A, Romero A, Mariscal-Arcas M, Monteagudo C…
Int J Food Sci Nutr Mar 2013
PMID: 22946650

Review: Protein, Calcium, Vitamins D, C, K, and Fruits and Veggies in Osteoporosis

Abstract

The role of diet in osteoporosis prevention and management.

Diet, a modifiable osteoporosis risk factor, plays an important role in the acquisition and maintenance of bone mass. The influence of diet on bone begins in childhood; even maternal diet can influence bone mass in the offspring. A good general nutritional status and adequate dietary protein, calcium, vitamin D, fruits, and vegetables have a positive influence on bone health, while a high caloric diet and heavy alcohol consumption have been associated with lower bone mass and higher rates of fracture. The evidence for a role of other minerals and vitamins in skeletal health is not as strong, but recent evidence suggests that vitamins C and K might also have an effect on bone.

Levis S, Lagari VS
Curr Osteoporos Rep Dec 2012
PMID: 23001895

Blueberry Prevents Bone Loss in Ovariectomized Rats

Abstract

Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis.

The objective of the present study was to explore the bone protective role of blueberry in an ovariectomized rat model. Thirty 6-month-old female Sprague-Dawley rats were either sham-operated (Sham) or ovariectomized (Ovx) and divided into three groups: Sham, Ovx (control), Ovx+blueberry (5% blueberry w/w). After 100 days of treatment, rats were euthanized, and blood and tissues were collected. Bone mineral density (BMD) and content of whole body, right tibia, right femur and fourth lumbar vertebra were assessed via dual-energy X-ray absorptiometry. As expected, Ovx resulted in loss of whole-body, tibial, femoral, and 4th lumbar BMD by approximately 6%. Blueberry treatment was able to prevent the loss of whole-body BMD and had an intermediary effect on prevention of tibial and femoral BMD when compared to either Sham or Ovx controls. The bone-protective effects of blueberry may be due to suppression of Ovx-induced increase in bone turnover, as evident by lowered femoral mRNA levels of alkaline phosphatase, collagen type I and tartrate-resistant acid phosphatase to the Sham levels. Similarly, serum osteocalcein levels were also lower in the blueberry group when compared to the Ovx control group, albeit not significantly. In summary, our findings indicate that blueberry can prevent bone loss as seen by the increases in BMD and favorable changes in biomarkers of bone metabolism.

Devareddy L, Hooshmand S, Collins JK, Lucas EA…
J. Nutr. Biochem. Oct 2008
PMID: 18328688

Review: Phytonutrients

Abstract

Phytonutrients for bone health during ageing.

Osteoporosis is a skeletal disease characterized by a decrease in bone mass and bone quality that predispose an individual to an increased risk of fragility fractures. Evidence demonstrating a positive link between certain dietary patterns (e.g. Mediterranean diet or high consumption of fruits and vegetables) and bone health highlights an opportunity to investigate their potential to protect against the deterioration of bone tissue during ageing. While the list of these phytonutrients is extensive, this review summarizes evidence on some which are commonly consumed and have gained increasing attention over recent years, including lycopene and various polyphenols (e.g. polyphenols from tea, grape seed, citrus fruit, olive and dried plum). Evidence to define a clear link between these phytonutrients and bone health is currently insufficient to generate precise dietary recommendations, owing to mixed findings or a scarcity in clinical data. Moreover, their consumption typically occurs within the context of a diet consisting of a mix of phytonutrients and other nutrients rather than in isolation. Future clinical trials that can apply a robust set of outcome measurements, including the determinants of bone strength, such as bone quantity (i.e. bone mineral density) and bone quality (i.e. bone turnover and bone microarchitecture), will help to provide a more comprehensive outlook on how bone responds to these various phytonutrients. Moreover, future trials that combine these phytonutrients with established bone nutrients (i.e. calcium and vitamin D) are needed to determine whether combined strategies can produce more robust effects on skeletal health.

Sacco SM, Horcajada MN, Offord E
Br J Clin Pharmacol Mar 2013
PMID: 23384080

Review: Fruits and Phytochemicals

Abstract

Fruits and dietary phytochemicals in bone protection.

Osteoporosis is a disease of bone characterized by loss of bone matrix and deterioration of bone microstructure that leads to an increased risk of fracture. Cross-sectional studies have shown a positive association between higher fruit intake and higher bone mineral density. In this review, we evaluated animal and cellular studies of dried plum and citrus and berry fruits and bioactive compounds including lycopene, phenolics, favonoids, resveratrol, phloridzin, and pectin derived from tomato, grapes, apples, and citrus fruits. In addition, human studies of dried plum and lycopene were reviewed. Animal studies strongly suggest that commonly consumed antioxidant-rich fruits have a pronounced effect on bone, as shown by higher bone mass, trabecular bone volume, number, and thickness, and lower trabecular separation through enhancing bone formation and suppressing bone resorption, resulting in greater bone strength. Such osteoprotective effects seem to be mediated via antioxidant or anti-inflammatory pathways and their downstream signaling mechanisms, leading to osteoblast mineralization and osteoclast inactivation. In future studies, randomized controlled trials are warranted to extend the bone-protective activity of fruits and their bioactive compounds. Mechanistic studies are needed to differentiate the roles of phytochemicals and other constitutes in bone protection offered by the fruits. Advanced imaging technology will determine the effective doses of phytochemicals and their metabolites in improving bone mass, microarchitecture integrity, and bone strength, which is a critical step in translating the benefits of fruit consumption on osteoporosis into clinical data.

Shen CL, von Bergen V, Chyu MC, Jenkins MR…
Nutr Res Dec 2012
PMID: 23244535