Monthly Archives: March 2014

High-Dose Curcumin Increases Bone Strength and Density in Ovariectomized Rats

Abstract

Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat.

Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats.
Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test.
High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015).
The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.

Cho DC, Jung HS, Kim KT, Jeon Y…
J Korean Neurosurg Soc Dec 2013
PMID: 24527187 | Free Full Text

Curcumin Helps Kill Osteoblasts In Vitro

Abstract

Dosage effects of curcumin on cell death types in a human osteoblast cell line.

Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties, as well as their ability to either induce or prevent cell apoptosis. However, the precise molecular mechanisms of these effects are unknown. Here, we demonstrate that curcumin can induce apoptotic changes, including JNK activation, caspase-3 activation, and cleavage of PARP and PAK2, at treatment concentrations lower than 25 microM in human osteoblast cells. In contrast, treatment with 50-200 microM of curcumin does not induce apoptosis, but rather triggers necrotic cell death in human osteoblasts. Using the cell permeable dye 2′,7′-dichlorofluorescin diacetate (DCF-DA) as an indicator of reactive oxygen species (ROS) generation, we found that while treatment with 12.5-25 microM curcumin directly increased intracellular oxidative stress, 50-200 microM curcumin had far less effect. Pretreatment of cells with N-acetyl cysteine or alpha-tocopherol, two well known ROS scavengers, attenuated the intracellular ROS levels increases and converted the apoptosis to necrosis induced by 12.5-25 microM curcumin. Moreover, we observed a dose-dependent decrease in intracellular ATP levels after treatment of osteoblast cells with curcumin and pretreatment of cells with antimycin or 2-deoxyglucose to cause ATP depletion significantly converted 12.5-25 microM curcumin-induced apoptosis to necrosis, indicating that ATP (a known mediator of apoptotic versus necrotic death) is most likely involved in the switching mechanism. Overall, our results signify that curcumin dosage treatment determines the possible effect on ROS generation, intracellular ATP levels, and cell apoptosis or necrosis in osteoblast cells.

Chan WH, Wu HY, Chang WH
Food Chem. Toxicol. Aug 2006
PMID: 16624471

Curcumin Decreases Bone Density in Rats

Abstract

Effects of curcumin on the skeletal system in rats.

There is increasing interest in the discovery of natural compounds that could favorably affect the skeletal system. Curcumin is a constituent of turmeric, a plant which has been used for centuries as a dietary spice and a traditional Indian medicine. Curcumin has been reported to affect differentiation, activity and the lifespan of osteoblasts and osteoclasts in vitro. The aim of the present study was to investigate the effects of curcumin on the skeletal system of rats in vivo. Curcumin (10 mg/kg, po daily) was administered for four weeks to normal (non-ovariectomized) and bilaterally ovariectomized (estrogen-deficient) three-month-old female Wistar Cmd:(WI)WU rats. Ovariectomy was performed seven days before the start of curcumin administration. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, as well as the mechanical properties of the bone, were examined. Serum total cholesterol and estradiol levels were also determined. In rats with normal estrogen levels, curcumin decreased serum estradiol level and slightly increased cancellous bone formation, along with decreased mineralization. Estrogen deficiency induced osteoporotic changes in the skeletal system of the ovariectomized control rats. In ovariectomized rats, curcumin decreased body mass gain and serum total cholesterol level, slightly improved some bone histomorphometric parameters impaired by estrogen deficiency, but did not improve bone mineralization or mechanical properties. In conclusion, the results of the present in vivo study in rats did not support the hypothesis that curcumin, at doses that are readily achievable through dietary intake, could be useful for the prevention or treatment of osteoporosis.

Folwarczna J, Zych M, Trzeciak HI
Pharmacol Rep
PMID: 21098873 | Free Full Text

Curcumin Prevents Bone Loss in Ovariectomized Rats

Abstract

Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis.

Curcumin has anti-oxidative activity. In view of the increasing evidence for a biochemical link between increased oxidative stress and reduced bone density we hypothesized that curcumin might increase bone density by elevating antioxidant activity in some target cell type. We measured bone density by Micro-CT, enzyme expression levels by quantitative PCR or enzyme activity, and osteoclast (OC) formation by tartrate-resistant acid phosphatase staining. The bone mineral density of the femurs of curcumin-administered mice was significantly higher than that of vehicle-treated mice after ovariectomy (OVX) and this was accompanied by reduced amounts of serum collagen-type I fragments, which are markers of bone resorption. Curcumin suppressed OC formation by increasing receptor activator of nuclear factor-κB ligand (RANKL)-induced glutathione peroxidase-1, and reversed the stimulatory effect of homocysteine, a known H(2) O(2) generator, on OC formation by restoring Gpx activity. Curcumin generated an aberrant RANKL signal characterized by reduced expression of nuclear factor of activated T cells 2 (NFAT2) and attenuated activation of mitogen-activated protein kinases (ERK, JNK, and p38). Curcumin thus inhibited OVX-induced bone loss, at least in part by reducing osteoclastogenesis as a result of increased antioxidant activity and impaired RANKL signaling. These findings suggest that bone loss associated with estrogen deficiency could be attenuated by curcumin administration.

Kim WK, Ke K, Sul OJ, Kim HJ…
J. Cell. Biochem. Nov 2011
PMID: 21732406

The ovariectomized, mature rat model of postmenopausal osteoporosis: an assessment of the bone sparing effects of curcumin.

Abstract

The ovariectomized, mature rat model of postmenopausal osteoporosis: an assessment of the bone sparing effects of curcumin.

Identification of natural health products that might benefit skeletal health could reduce the negative impact of osteoporotic bone fractures upon society. The objectives of this study were to evaluate an animal model of postmenopausal osteoporosis and to search for evidence that curcumin reduces bone mineral losses in a dose-dependent manner when endogenous estrogen levels are reduced. Bone mineral density was measured at the spine, femur and whole body before and at 2, 4 and 6 months after ovariectomy in each of 40 mature rats. Serum osteocalcin and C-telopeptide were measured as indicators of bone formation and resorption rates. Femoral compressive strength was measured at 6 months. Ovariectomy alone resulted in loss of mineral from the spine (p<0.005) and an increase in osteocalcin levels (p<0.05). At the same time, there was an increase in energy to fracture (p<0.01) due to an increased bone size. When ovariectomized animals were given etidronate there was no loss of mineral from the spine, the size of the femur increased (p<0.005), C-telopeptide levels were reduced (p<0.001) and femoral compressive strength increased (p<0.025). Administration of curcumin to ovariectomized animals resulted in changes that were intermediate between those produced by etidronate and by ovariectomy alone. The increase in femur size produced by the highest dose of curcumin was statistically significant (p< 0.01) and curcumin administration resulted in a significant, dose dependent, increase in energy to fracture. Curcumin produces beneficial changes in bone turnover and increases in bone strength using the ovariectomized mature rat model of postmenopausal osteoporosis.

French DL, Muir JM, Webber CE
Phytomedicine Dec 2008
PMID: 18693096

Curcumin, Japanese Apricot, and Others, Effects on Osteoclasts in Mice In Vitro

Abstract

Screening of Korean medicinal plants for possible osteoclastogenesis effects in vitro.

Bone undergoes continuous remodeling through bone formation and resorption, and maintaining the balance for skeletal rigidity. Bone resorption and loss are generally attributed to osteoclasts. Differentiation of osteoclasts is regulated by receptor activator of nuclear factor NF-kB ligand (RANKL), a member of tumor necrosis factor family. When the balance is disturbed, pathological bone abnormality ensues. Through the screening of traditional Korean medicinal plants, the effective molecules for inhibition and stimulation of RANKL-induced osteoclast differentiation in mouse bone marrow macrophages were identified. Among 222 methanol extracts, of medicinal plants, 10 samples exhibited ability to induce osteoclast differentiation. These include Dryobalanops aromatica, Euphoria longana, Lithospermum erythrorhizon, Prunus mume, Prunus nakaii, and Polygonatum odoratum. In contrast, Ailanthus altissima, Curcuma longa, Solanum nigrum, Taraxacum platycarpa, Trichosanthes kirilowii, and Daphne genkwa showed inhibitory effects in RANKL-induced osteoclast differentiation.

Youn YN, Lim E, Lee N, Kim YS…
Genes Nutr Feb 2008
PMID: 18850234 | Free Full Text

Curcumin Improves Bone in Transgenic Mice

Abstract

Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice.

Alzheimer’s disease and osteoporosis are often observed to co-occur in clinical practice. The present study aimed to evaluate the bone microarchitecture and bone mineral density (BMD) of the proximal tibia in APP/PS1 transgenic mice by micro-computed tomography (micro-CT), and to search for evidence that curcumin can be used to reduce bone mineral losses and treat osteoporosis after senile dementia in these transgenic mice. Three-month-old female mice were divided into the following groups (n=9 per group): wild-type mice (WT group); APP/PS1 transgenic mice (APP group); and APP/PS1 transgenic mice with curcumin treatment (APP+Cur group). Between 9 and 12 months of age, the APP+Cur group were administered curcumin orally (600ppm). CT scans of the proximal tibia were taken at 6, 9 and 12 months. At 6 months, there were little differences in the structural parameters. At 9 months, the APP groups displayed loss of bone volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and connectivity density (Conn.D) and increases in trabecular separation (Tb.Sp) and geometric degree of anisotropy (DA) (P<0.05 or P<0.01), with significant changes in the BMD parameters. At 12 months, curcumin treatment led to constant increases in the trabecular bone mass of the metaphysis and clearly improved the BMD. By the same time, we measured the TNF-α and IL-6 in the serum among the different groups at 6, 9 and 12 months by enzyme-linked immunoassay(ELISA). These results suggest that APP/PS1 transgenic mice are susceptible to osteoporosis, and that curcumin can prevent further deterioration of the bone structure and produce beneficial changes in bone turnover. The change of inflammation cytokine, including TNF-α and IL-6, may play an important role in the mechanisms of action of curcumin, but the detail mechanism remains unknown.

Yang MW, Wang TH, Yan PP, Chu LW…
Phytomedicine Jan 2011
PMID: 20637579

Curcumin Inhibits Rat Osteoblast Cells In Vitro

Abstract

Curcumin inhibits the proliferation and mineralization of cultured osteoblasts.

The effects of curcumin, which is an important constituent of rhizomes of the plant Curcuma longa Linn, on the metabolism of osteoblasts were examined in cultures of rat calvarial osteoblastic cells (ROB cells). The proliferation of cells was markedly inhibited upon exposure of cells to curcumin at 5×10(-6) to 1×10(-5) M. Curcumin at 1×10(-5) M did not induce apoptosis in ROB cells but arrested cells at the G1 phase of the cell cycle. In addition, curcumin stimulated the expression of mRNA for p21(WAF1/CIP1), which inhibits the activity of cyclin-dependent kinases, and inhibited the phosphorylation of histone H1. Furthermore, curcumin reduced the rate of deposition of calcium and the formation of mineralized nodules. Our results indicate that curcumin might inhibit the proliferation and mineralization of osteoblastic cells through the expression of p21(WAF1/CIP1).

Notoya M, Nishimura H, Woo JT, Nagai K…
Eur. J. Pharmacol. Mar 2006
PMID: 16476424

Turmeric Inhibits Osteoclasts in Rat Model of Rheumatoid Arthritis

Abstract

Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis.

Scientific evidence is lacking for the antiarthritic efficacy of turmeric dietary supplements that are being promoted for arthritis treatment. Therefore, we undertook studies to determine the antiarthritic efficacy and mechanism of action of a well-characterized turmeric extract using an animal model of rheumatoid arthritis (RA).
The composition of commercial turmeric dietary supplements was determined by high-performance liquid chromatography. A curcuminoid-containing turmeric extract similar in composition to these supplements was isolated and administered intraperitoneally to female Lewis rats prior to or after the onset of streptococcal cell wall-induced arthritis. Efficacy in preventing joint swelling and destruction was determined clinically, histologically, and by measurement of bone mineral density. Mechanism of action was elucidated by analysis of turmeric’s effect on articular transcription factor activation, microarray analysis of articular gene expression, and verification of the physiologic effects of alterations in gene expression.
A turmeric fraction depleted of essential oils profoundly inhibited joint inflammation and periarticular joint destruction in a dose-dependent manner. In vivo treatment prevented local activation of NF-kappaB and the subsequent expression of NF-kappaB-regulated genes mediating joint inflammation and destruction, including chemokines, cyclooxygenase 2, and RANKL. Consistent with these findings, inflammatory cell influx, joint levels of prostaglandin E(2), and periarticular osteoclast formation were inhibited by turmeric extract treatment.
These translational studies demonstrate in vivo efficacy and identify a mechanism of action for a well-characterized turmeric extract that supports further clinical evaluation of turmeric dietary supplements in the treatment of RA.

Funk JL, Frye JB, Oyarzo JN, Kuscuoglu N…
Arthritis Rheum. Nov 2006
PMID: 17075840 | Free Full Text

Curcumin Inhibits Osteoclasts in Mouse Cells

Abstract

Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis.

Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.

Bharti AC, Takada Y, Aggarwal BB
J. Immunol. May 2004
PMID: 15128775 | Free Full Text