Tag Archives: review

Review: Ukrain Influence on Bone status

Abstract

Ukrain (NSC-631570) influences on bone status: a review.

Ukrain, a thiophosphoric acid alkaloid derivative of Chelidonium majus L., was shown to affect bone tissue metabolism as assessed in densitometric and biomechanical studies in rats. Its action could be slightly osteopenic at the highest doses administered to intact animals for a prolonged period of time. This phenomenon is possibly related to Ukrain’s inhibitory effect on spontaneous locomotor activity of treated animals and/or to the stimulatory effect of the drug on the osteoclastic activity via the macrophage system. By far, the most important finding seems to be the anabolic effect of Ukrain on bone in ovariectomized rats, which is most probably related to induced increase in the production of gonadal hormones, predominantly estrogens. In this regard, the postmenopausal population of female patients treated for malignancies with Ukrain (and obviously the most numerous one) meritis clinical attention as far as the antiosteoporotic effects of this drug are concerned.

Jabłoński M
Drugs Exp Clin Res 2000
PMID: 11345045

Review: Depression and Bone Mass

Abstract

Depression and bone mass.

Although it has been repeatedly suggested that low bone mineral density (BMD) is disproportionately prevalent among patients with depressive disorders, so far depression has not been officially acknowledged as a risk factor for osteoporosis. In a recent meta-analysis comparing depressed with nondepressed individuals we report that BMD is lower in depressed than nondepressed subjects. The association between depression and BMD is stronger in women than men, and in premenopausal than postmenopausal women. Only women psychiatrically diagnosed for major depression display significantly low BMD; women diagnosed by self-rating questionnaires do not. Using a mouse model for depression, we demonstrate a causal relationship between depressive-like behavior and bone loss. The depression-induced bone loss is associated with increases in skeletal norepinephrine and serum corticosterone levels. Bone loss, but not the depressive behavior, could be prevented by a beta-blocker. Hence, depression appears as a significant risk factor for low BMD, causing bone loss through stimulation of the sympathetic nervous system.

Bab IA, Yirmiya R
Ann. N. Y. Acad. Sci. Mar 2010
PMID: 20392233

Review: Banaba May Have Osteoblastic Activity

Abstract

A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid.

Banaba (Lagerstroemia speciosa L.) extracts have been used for many years in folk medicine to treat diabetes, with the first published research study being reported in 1940. This review summarizes the current literature regarding banaba and its constituents. The hypoglycemic effects of banaba have been attributed to both corosolic acid as well as ellagitannins. Studies have been conducted in various animal models, human subjects and in vitro systems using water soluble banaba leaf extracts, corosolic acid-standardized extracts, and purified corosolic acid and ellagitannins. Pure corosolic acid has been reported to decrease blood sugar levels within 60 min in human subjects. Corosolic acid also exhibits antihyperlipidemic, antioxidant, antiinflammatory, antifungal, antiviral, antineoplastic and osteoblastic activities. The beneficial effects of banaba and corosolic acid with respect to various aspects of glucose and lipid metabolism appear to involve multiple mechanisms, including enhanced cellular uptake of glucose, impaired hydrolysis of sucrose and starches, decreased gluconeogenesis and the regulation of lipid metabolism. These effects may be mediated by PPAR, MAP K, NF-κB and other signal transduction factors. No adverse effects have been observed or reported in animal studies or controlled human clinical trials. Banaba extract, corosolic acid and other constituents may be beneficial in addressing the symptoms associated with metabolic syndrome, as well as offering other health benefits.

Stohs SJ, Miller H, Kaats GR
Phytother Res Mar 2012
PMID: 22095937

Review: Malnutrition Associated with Decreased Bone Mass

Abstract

Assessment and management of nutrition in older people and its importance to health.

Nutrition is an important element of health in the older population and affects the aging process. The prevalence of malnutrition is increasing in this population and is associated with a decline in: functional status, impaired muscle function, decreased bone mass, immune dysfunction, anemia, reduced cognitive function, poor wound healing, delayed recovery from surgery, higher hospital readmission rates, and mortality. Older people often have reduced appetite and energy expenditure, which, coupled with a decline in biological and physiological functions such as reduced lean body mass, changes in cytokine and hormonal level, and changes in fluid electrolyte regulation, delay gastric emptying and diminish senses of smell and taste. In addition pathologic changes of aging such as chronic diseases and psychological illness all play a role in the complex etiology of malnutrition in older people. Nutritional assessment is important to identify and treat patients at risk, the Malnutrition Universal Screening Tool being commonly used in clinical practice. Management requires a holistic approach, and underlying causes such as chronic illness, depression, medication and social isolation must be treated. Patients with physical or cognitive impairment require special care and attention. Oral supplements or enteral feeding should be considered in patients at high risk or in patients unable to meet daily requirements.

Ahmed T, Haboubi N
Clin Interv Aging 2010
PMID: 20711440 | Free Full Text


The full study also has this comment about protein:

Concerns about the detrimental affects of increased protein intake on bone health, renal function, neurological function and cardiovascular function are generally unfounded. It has been recommended that the RDA intake of 1.5 g protein/kg body weight per day is a reasonable intake in older people to optimize protein intake in terms of health and function.

Review: Reduction in Food Associated with Decreased Bone Mass in Older Persons

Abstract

Physiological and psychosocial age-related changes associated with reduced food intake in older persons.

Dietary intake changes during the course of aging. Normally an increase in food intake is observed around 55 years of age, which is followed by a reduction in food intake in individuals over 65 years of age. This reduction in dietary intake results in lowered levels of body fat and body weight, a phenomenon known as anorexia of aging. Anorexia of aging has a variety of consequences, including a decline in functional status, impaired muscle function, decreased bone mass, micronutrient deficiencies, reduced cognitive functions, increased hospital admission and even premature death. Several changes during lifetime have been implicated to play a role in the reduction in food intake and the development of anorexia of aging. These changes are both physiological, involving peripheral hormones, senses and central brain regulation and non-physiological, with differences in psychological and social factors. In the present review, we will focus on age-related changes in physiological and especially non-physiological factors, that play a role in the age-related changes in food intake and in the etiology of anorexia of aging. At the end we conclude with suggestions for future nutritional research to gain greater understanding of the development of anorexia of aging which could lead to earlier detection and better prevention.

de Boer A, Ter Horst GJ, Lorist MM
Ageing Res. Rev. Jan 2013
PMID: 22974653

Review: Creatine for Bone Health

Abstract

Potential of creatine supplementation for improving aging bone health.

Aging subsequently results in bone and muscle loss which has a negative effect on strength, agility, and balance leading to increased risks of falls, injuries, and fractures. Resistance training is an effective strategy for maintaining bone mass, possibly by increasing activity of cells involved in bone formation and reducing activity of cells involved in bone resorption. However, bone loss is still evident in older adults who have maintained resistance training for most of their life, suggesting that other factors such as nutrition may be involved in the aging bone process. Emerging evidence suggests that creatine supplementation, with and without resistance training, has the potential to influence bone biology. However, research investigating the longer-term effects of creatine supplementation and resistance training on aging bone is limited.

Candow DG, Chilibeck PD
J Nutr Health Aging Feb 2010
PMID: 20126964

Review: FOS and Inulin and Calcium Absorption

Abstract

Current data with inulin-type fructans and calcium, targeting bone health in adults.

In humans, there is increasing evidence that the colon can absorb nutritionally significant amounts of calcium, and this process may be susceptible to dietary manipulation by fermentable substrates, especially inulin-type fructans. Inulin-type fructans can modulate calcium absorption because they are resistant to hydrolysis by mammalian enzymes and are fermented in the large intestine to produce short-chain fatty acids, which in turn reduce luminal pH and modify calcium speciation, and hence solubility, or exert a direct effect on the mucosal transport pathway. Quite a few intervention studies showed an improvement of calcium absorption in adolescents or young adults by inulin-type fructans. In the same way, a positive effect has been reported in older women.

Coxam V
J. Nutr. Nov 2007
PMID: 17951497 | Free Full Text

Review: Calcium, Vitamin D, K, Phytoestrogens

Abstract

Diet, nutrition, and bone health.

Osteoporosis is a debilitating disease that affects many older people. Fragility fractures are the hallmark of osteoporosis. Although nutrition is only 1 of many factors that influence bone mass and fragility fractures, there is an urgent need to develop and implement nutritional approaches and policies for the prevention and treatment of osteoporosis that could, with time, offer a foundation for population-based preventive strategies. However, to develop efficient and precocious strategies in the prevention of osteoporosis, it is important to determine which modifiable factors, especially nutritional factors, are able to improve bone health throughout life. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients as well as bioactive food ingredients. The evidence-base to support the role of nutrients and food components in bone health ranges from very firm to scant, depending on the nutrient/component. This article initially overviews osteoporosis, including its definition, etiology, and incidence, and then provides some information on possible dietary strategies for optimizing bone health and preventing osteoporosis. The potential benefits of calcium, vitamin D, vitamin K(1), phytoestrogens, and nondigestible oligosaccharides are briefly discussed, with particular emphasis on the evidence base for their benefits to bone. It also briefly considers some of the recent findings that highlight the importance of some dietary factors for bone health in childhood and adolescence.

Cashman KD
J. Nutr. Nov 2007
PMID: 17951494 | Free Full Text

Review: FOS Preventive Effects on Bone [Japanese]

Abstract

Prevention of osteoporosis by foods and dietary supplements. The effect of fructooligosaccharides (FOS) on the calcium absorption and bone.

Fructooligosaccharides (FOS) are well known as prebiotics which improve intestinal microflaura. FOS also have increasing effect on the intestinal absorption of calcium (Ca), magnesium (Mg) and iron. These effects were inspected by many animal experiments and then by human studies. Especially, FOS clearly prevent the decrease of bone mineral density by gastrectomy in rats. In this report, we mainly explain the preventive effect of FOS on the bone of gastrectomized rats and introduce relationship between another food ingredient or exercise.

Ohta A
Clin Calcium Oct 2006
PMID: 17012821

Review: Prebiotics in Adolescents

Abstract

A prebiotic substance persistently enhances intestinal calcium absorption and increases bone mineralization in young adolescents.

A number of short-term (9 days to 5 weeks) studies have reported that non-digestible. oligosaccharides enhance intestinal calcium absorption. Recent interesting data from an intervention trial in adolescents (9-13 years of age) suggest that a non-digestible oligosaccharide can persistently stimulate calcium absorption over 12 months and can also enhance bone mineralization during pubertal growth.

Cashman KD
Nutr. Rev. Apr 2006
PMID: 16673754