Tag Archives: positive

Zinc Deficiency or Calorie Restriction Impares Bone Development in Weanling Rats

Abstract

Zinc-deficient rats have more limited bone recovery during repletion than diet-restricted rats.

The objective of this study was to investigate the effects of dietary zinc deficiency and diet restriction on bone development in growing rats, and to determine whether any adverse effects could be reversed by dietary repletion. Weanling rats were fed either a zinc-deficient diet ad libitum (ZD; <1 mg zinc/kg) or nutritionally complete diet (30 mg zinc/kg) either ad libitum (CTL) or pair-fed to the intake of the ZD group (DR; diet-restricted) for 3 weeks (deficiency phase) and then all groups were fed the zinc-adequate diet ad libitum for 3, 7, or 23 days (repletion phase). Excised femurs were analyzed for bone mineral density (BMD) using dual-energy x-ray absorptiometry, and plasma was analyzed for markers of bone formation (osteocalcin) and resorption (Ratlaps). After the deficiency phase, ZD had lower body weight and reduced femur BMD, zinc, and phosphorus concentrations compared with DR; and these parameters were lower in DR compared with CTL. Femur calcium concentrations were unchanged among the groups. Reduced plasma osteocalcin in ZD and elevated plasma Ratlaps in DR suggested that zinc deficiency limits bone formation while diet restriction accelerates bone resorption activity. After 23 days of repletion, femur size, BMD, and zinc concentrations remained lower in ZD compared with DR and CTL. Body weight and femur phosphorus concentrations remained lower in both ZD and DR compared with CTL after repletion. There were no differences in plasma osteocalcin concentrations after the repletion phase, but the plasma Ratlaps concentrations remained elevated in DR compared with CTL. In summary, both ZD and DR lead to osteopenia during rapid growth, but the mechanisms appear to be due to reduced modeling in ZD and higher turnover in DR. Zinc deficiency was associated with a greater impairment in bone development than diet restriction, and both deficiencies limited bone recovery during repletion in growing rats.

Hosea HJ, Taylor CG, Wood T, Mollard R…
Exp. Biol. Med. (Maywood) Apr 2004
PMID: 15044713

Zinc, but not Zinc-Carnosine, Enhances Anabolic Effect of IGF-1 in Mouse Osteoblasts In Vitro

Abstract

Zinc modulation of insulin-like growth factor’s effect in osteoblastic MC3T3-E1 cells.

Whether the anabolic effect of insulin-like growth factor-I (IGF-I) in osteoblastic MC3T3-E1 cells is modulated by zinc, an activator of bone formation, was investigated in vitro. After subculture for 3 days, the cells were cultured for 72 h with IGF-I (10(-8) M). The peptide produced a significant increase of protein concentration, deoxyribonucleic acid (DNA) content, and cell number in the cells. These increases were markedly enhanced by the presence of zinc sulfate (10(-5) M), but not zinc-chelating dipeptide (beta-alanyl-L-histidinato zinc; 10(-5) M). Also, the cellular alkaline phosphatase activity was synergistically increased by the presence of both IGF-I and zinc sulfate. Thus, effect was not seen in the presence of both insulin (10(-8) M) and zinc sulfate (10(-5) M). The effect of zinc sulfate to enhance the IGF-I-increased alkaline phosphatase activity and protein concentration in the cells was clearly prevented by the presence of cycloheximide (10(-6) M), staurosporin (10(-8) M), or okadaic acid (10(-7) M) with an effective concentration. However, staurosporin had a partial inhibiting effect on the IGF-I or the IGF-I plus zinc-induced increases in cellular protein, although okadaic acid entirely blocked the IGF-I or the IGF-I plus zinc effect. The present study demonstrates that the anabolic effect of IGF-I in osteoblastic cells is enhanced by zinc ion. The enhancement by zinc may be mediated through the signaling pathway of protein kinase C and protein phosphatase in the cells.

Matsui T, Yamaguchi M
Peptides 1995
PMID: 8532589

Zinc Protects Bone Against Cadmium in Rats

Abstract

Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats.

It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system.

Brzóska MM, Rogalska J
Toxicol. Appl. Pharmacol. Oct 2013
PMID: 23726800

Zinc Deficiency Reduces Bone Density in Rats

Abstract

Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study.

The objective of this study was to investigate the effects of zinc deficiency initiated during adolescence on skeletal densitometry, serum markers of bone metabolism, femur minerals and morphometry in young adult rats. Ten-week-old male rats were fed a <1-mg Zn/kg diet (9ZD), a 5-mg Zn/kg diet (9MZD) or a 30-mg Zn/kg diet (9CTL) for up to 9 weeks. Analyses included bone mineral density, serum osteocalcin and C-terminal peptides of type I collagen, serum zinc, femur zinc, calcium and phosphorus, and femur morphometry. Bone mineral density was 14% lower in the spine of 9ZD, but was not altered in the whole body, tibia or femur, or in any of the aforementioned sites in 9MZD, compared to 9CTL. When adjusted for size, spine bone mineral apparent density was still 8% lower in 9ZD than 9CTL. Serum osteocalcin, a marker for bone formation, was approximately 33% lower in 9ZD compared to both 9MZD and 9CTL. The 9ZD and 9MZD had 57% lower femur zinc and 56-88% lower serum zinc concentrations compared to 9CTL. These findings indicate that severe zinc deficiency initiated during adolescence may have important implications for future bone health, especially with regards to bone consolidation in the spine.

Ryz NR, Weiler HA, Taylor CG
Ann. Nutr. Metab. 2009
PMID: 19506366

Zinc-Carnosine > Zinc at Enhancing Estrogen’s Anabolic Effect on Osteoblasts In Vitro

Abstract

Zinc enhancement of 17beta-estradiol’s anabolic effect in osteoblastic MC3T3-E1 cells.

The anabolic effect of 17beta-estradiol in osteoblastic MC3T3-E1 cells was investigated. The cells were cultured for 3 days in the medium containing either vehicle or 17beta-estradiol (10(-11)-10(-9) M). 17beta-Estradiol significantly increased alkaline phosphatase activity and protein concentration in the cells. The steroid (10(-9) M) also significantly elevated the cell numbers and the cellular DNA content. The anabolic effect by 17beta-estradiol was blocked by the presence of dipicolinate (10(-3) M), a chelator of zinc ion, suggesting a role of cellular zinc in osteoblastic cell function. The presence of zinc sulfate (10(-5) M) or beta-alanyl-L-histidinato zinc (AHZ) (10(-5) M) significantly enhanced the 17beta-estradiol (10(-10) or 10(-9) M)-induced increase of alkaline phosphatase activity and protein concentration in the cells; the effect of AHZ was greater than that of zinc sulfate. The enhancement by zinc compounds was not based on the augmentation of osteoblastic cell numbers. The co-addition of cycloheximide (10(-6) M), an inhibitor of protein synthesis, completely blocked the zinc compound (10(-5) M)-induced enhancement of 17beta-estradiol’s (10(-9) M) effect to increase alkaline phosphatase activity and protein concentration in the cells. Moreover, the anabolic effect of 17beta-estradiol together with or without zinc compounds was abolished by the presence of staurosporine (10(-8) M), an inhibitor of protein kinase C, or of okadaic acid (10(-7) M), an inhibitor of protein phosphatase. The present study demonstrates that the anabolic effect of 17beta-estradiol is enhanced by zinc-chelating dipeptide in osteoblastic MC3T3-E1 cells, and that the enhancing effect may involve protein synthesis and protein kinase activity.

Yamaguchi M, Matsui T
Calcif. Tissue Int. Jun 1997
PMID: 9164827

Zinc Induces Bone Formation in Rat Cells

Abstract

Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl-tRNA synthetase.

The present investigation was undertaken to clarify the effect of zinc on bone protein synthesis in tissue culture. Calvaria were removed from 3-week-old male rats and cultured for periods up to 96 hr in Dulbecco’s Modified Eagle Medium (high glucose, 4500 mg/dl) supplemented with antibiotics and bovine serum albumin. The calvaria were incubated at 37 degrees in 5% CO2/95% air in the medium containing 10(-6)-10(-4) M zinc. Zinc content in bone cells was increased when the culture was treated with 10(-5) and 10(-4) M zinc for 48 hr. When calvaria cultured in the presence of 10(-4) M zinc were pulsed with [14C]uridine, the incorporation of [14C]uridine into the bone RNA was not increased significantly. In the pulse with [3H]leucine, the presence of 10(-5) to 10(-4) M zinc in the medium caused a significant increase in the incorporation of [3H]leucine into the acid-insoluble residues of bone tissue. This increase was blocked completely by treatment with 10(-7) M cycloheximide, an inhibitor of protein synthesis. When [3H]leucine was added into the reaction mixture containing the 5500 g supernatant fraction of the homogenate prepared from calvaria cultured in the presence of 10(-4) M zinc, the in vitro protein synthesis was increased about 2-fold. The activity of [3H]leucyl-tRNA synthetase in the 105,000 g supernatant fraction (cytosol) of the bone homogenate was increased about 2-fold by the culture with 10(-4) M zinc. The presence of 10(-4) M dipicolinate, a specific chelator of zinc, in the culture medium negated the effect of zinc on [3H]leucyl-tRNA synthetase activity. The addition of 10(-7) to 10(-6) M zinc into the reaction mixture containing enzyme extracts obtained from uncultured rat calvaria caused a 2-fold increase of [3H]leucyl-tRNA synthetase activity. These results clearly indicate that zinc induces the stimulation of protein synthesis at the translational level in bone cells. The present study further supports the view that zinc increases protein synthesis in bone cells and that the metal induces bone formation.

Yamaguchi M, Oishi H, Suketa Y
Biochem. Pharmacol. Nov 1988
PMID: 2461201

Manganese, but Not Copper, is an Effective Inhibitor of Bone Loss in Ovariectomized Rats

Abstract

Effects on bone loss of manganese alone or with copper supplement in ovariectomized rats. A morphometric and densitomeric study.

The aim of this study was to examine the effect of manganese (Mn) alone and with the addition of copper (Cu) in the inhibition of osteopenia induced by ovariectomy (OVX) in rats. Four lots of 100-day-old female Wistar rats were divided into experimental groups of 15 each. One group received a diet supplemented with 40 mg/kg of Mn per kilogram of feed (OVX+Mn). The second group received the same diet as the first, but with an additional 15 mg/kg of copper (OVX+Mn+Cu). The third group of 15 OVX and the fourth group of 15 Sham-OVX received no supplements. At the conclusion of the 30-day experiment, the rats were slaughtered and their femurs and fifth lumbar vertebrae were dissected. Femoral and vertebral length were measured with caliper and bones were weighed on a precision balance. The bone mineral content (BMC) and bone density (BMD) of the femur (F-BMC, mg and F-BMD, mg/cm(2)) and the fifth lumbar vertebra (V-BMC, mg and V-BMD, mg/cm(2)) were measured separately with dual energy X-ray absorptiometry. The F-BMD, mg/cm(2) was lower in the OVX than in the Sham-OVX group (P<0.0001) and in the other two groups receiving mineral supplements (P<0.005 in both). F-BMC, mg was significantly lower in the OVX group than in the other three (P<0.0001 in all cases). Calculations for V-BMC, mg and V-BMD, mg/cm(2) are similar to findings in the femur. These data show that a Mn supplement is an effective inhibitor of loss of bone mass after OVX, both on the axial and the peripheral levels, although this effect is not enhanced with the addition of Cu.

Rico H, Gómez-Raso N, Revilla M, Hernández ER…
Eur. J. Obstet. Gynecol. Reprod. Biol. May 2000
PMID: 10767519

Vanadium Improves Bone in Diabetic Rats

Abstract

The effects of vanadium treatment on bone in diabetic and non-diabetic rats.

Vanadium-based drugs lower glucose by enhancing the effects of insulin. Oral vanadium drugs are being tested for the treatment of diabetes. Vanadium accumulates in bone, though it is not known if incorporated vanadium affects bone quality. Nine- to 12-month-old control and streptozotocin-induced diabetic female Wistar rats were given bis(ethylmaltolato)oxovanadium(IV) (BEOV), a vanadium-based anti-diabetic drug, in drinking water for 12 weeks. Non-diabetic rats received 0, 0.25 or 0.75 mg/ml BEOV. Groups of diabetic rats were either untreated or treated with 0.25-0.75 mg/ml BEOV as necessary to lower blood glucose in each rat. In diabetic rats, this resulted in a Controlled Glucose group, simulating relatively well-managed diabetes, and an Uncontrolled Glucose group, simulating poorly managed diabetes. Plasma insulin, glucose and triglyceride assays assessed the diabetic state. Bone mineral density (BMD), mechanical testing, mineral assessment and histomorphometry measured the effects of diabetes on bone and the effects of BEOV on non-diabetic and diabetic bone. Diabetes decreased plasma insulin and increased plasma glucose and triglycerides. In bone, diabetes decreased BMD, strength, mineralization, bone crystal length, and bone volume and connectivity. Treatment was effective in incorporating vanadium into bone. In all treated groups, BEOV increased osteoid volume. In non-diabetic bone, BEOV increased cortical bone toughness, mineralization and bone formation. In controlled glucose rats, BEOV lowered plasma glucose and improved BMD, mechanical strength, mineralization, bone crystal length and bone formation rate. In poorly controlled rats, BEOV treatment slightly lowered plasma glucose but did not improve bone properties. These results suggest that BEOV improves diabetes-related bone dysfunction primarily by improving the diabetic state. BEOV also appeared to increase bone formation. Our study found no negative effects of vanadium accumulation in bone in either diabetic or non-diabetic rats at the dose given.

Facchini DM, Yuen VG, Battell ML, McNeill JH…
Bone Mar 2006
PMID: 16256449

Manganese Builds Bone in Rats

Abstract

Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats.

The effect of manganese (Mn) supplementation on bone mineral density (BMD) and bone metabolism parameters was determined in ovariectomized Sprague-Dawley rats. Rats were divided into four groups (OVX, OVX+Mn, sham, sham+Mn) and fed with different intake levels of manganese (adequate 0.001% Mn, supplementation 0.01% Mn) for 12 weeks. BMD of the lumbar vertebrae, femur, and tibia were significantly lowered in ovariectomized rats compared to the sham group. In addition, BMD of the lumbar vertebrae was significantly increased by Mn supplementation in the sham groups. Serum C-telopeptide cross-links of type I collagen (CTx), bone resorption biomarker, alkaline phosphatase (ALP), and bone formation biomarkers were not significantly different among the four groups. However, serum osteocalcin, a more sensitive bone formation biomarker, was significantly increased by Mn supplementation. To summarize, Mn supplementation resulted in increased BMD and bone formation. Based on our findings, more research is needed to better understand the effects of manganese supplementation on bone formation and resorption.

Bae YJ, Kim MH
Biol Trace Elem Res Jul 2008
PMID: 18330520

Calorie Restriction Reduces Osteonecrosis in Rats

Abstract

Dietary restriction reduces the prevalence of osteonecrosis of the caput femoris in spontaneously hypertensive rats.

We investigated the effects of dietary restriction (DR), an experimental intervention known to suppress several strain-specific diseases, on the prevalence of osteonecrosis of the caput femoris in spontaneously hypertensive rats (SHR). At 6 weeks of age, the food intake of DR rats was restricted to 65% of the mean intake of control rats fed ad libitum (AL). Acute osteonecrosis of the caput femoris without reparative tissue response (RTR) was observed at 10 and 15 weeks in both DR and AL groups; no such acute lesion was seen at 20 and 30 weeks. The prevalence of osteonecrosis, osteonecrosis with/without reparative tissue response was significantly reduced in DR rats at 15 and 20 weeks, but not at 10 weeks. DR reduced the body weight by 30% and the length of the femur by 10%. Ossification of the caput femoris, known to be delayed in AL rats compared with Wistar Kyoto rats, was also restored by DR. Our results showed that dietary restriction reduced the prevalence of osteonecrosis and modulated the mechanical factors involved in the lesion. They also indicate that utilization of dietary restriction is a useful research tool for investigating the underlying mechanisms of osteonecrosis of the caput femoris in SHR.

Tomita M, Shimokawa I, Maeda H, Higami Y…
Calcif. Tissue Int. Mar 1999
PMID: 10024387