Tag Archives: positive

Saurolactam Inhibits Osteoclasts In Vitro

Abstract

Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts.

The receptor activator of nuclear factor-kappaB ligand (RANKL) plays a critical role in the differentiation and bone resorptive activity of osteoclasts. Recently, the development of anti-resorptive agents from natural substances has become a subject of interest. Therefore, we evaluated the effects of 222 natural compounds on the RANKL-induced tartrate-resistance acid phosphatase (TRAP; a marker for osteoclast differentiation) activity and multinucleated osteoclast formation in RAW264.7 murine macrophage cells. We found that saurolactam was one of the compounds inhibiting the RANKL-induced osteoclastogenesis; it significantly inhibited the RANKL-induced TRAP activity and formation of multinucleated osteoclasts without any cytotoxicity. Interestingly, saurolactam prevented RANKL-induced activation of MAP kinases and NF-kappaB, and mRNA expression of osteoclast-related genes and transcription factors (c-Fos, Fra-2, and NFATc1). We also observed the inhibitory effect of saurolactam on the differentiation of mouse bone marrow-derived macrophages into osteoclasts. Furthermore, saurolactam inhibited the bone resorptive activity of mature osteoclasts with the induction of apoptotic signaling cascade and the inhibition of survival signaling pathways such as c-Src/PI3K/Akt, Ras/ERK, and JNK/c-Jun. In conclusion, although further studies are needed to determine the precise mechanism and biological efficacy of saurolactam in osteoclast-mediated bone disorders, our results demonstrate that saurolactam potentially inhibits osteoclast differentiation by preventing the activation of MAP kinases and transcription factors that consequently affect the regulation of genes required for osteoclastogenesis, and the bone resorptive activity of mature osteoclasts by inhibiting osteoclast survival-related signaling pathways and triggering the apoptotic signaling cascade.

Kim MH, Ryu SY, Choi JS, Min YK…
J. Cell. Physiol. Dec 2009
PMID: 19653230

CoQ10 Inhibits Osteoclasts and Enhances Osteoblasts In Vitro

Abstract

Coenzyme q10 regulates osteoclast and osteoblast differentiation.

Coenzyme Q10 (CoQ10), a powerful antioxidant, is a key component in mitochondrial bioenergy transfer, generating energy in the form of ATP. Many studies suggest that antioxidants act as inhibitors of osteoclastogenesis and we also have previously demonstrated the inhibitory effect of CoQ10 on osteoclast differentiation. Despite the significance of this effect, the molecular mechanism when CoQ10 is present at high concentrations in bone remodeling still remains to be elucidated. In this study, we investigated the inhibitory effect of CoQ10 on osteoclastogenesis and its impact on osteoblastogenesis at concentrations ranging from 10 to 100 μM. We found that nontoxic CoQ10 markedly attenuated the formation of receptor activator of nuclear factor κB ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone-marrow-derived monocytes (BMMs) and RAW 264.7 cells. Osteoclastogenesis with CoQ10 was significantly suppressed the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor, which are genetic markers of osteoclast differentiation and scavenged intracellular reactive oxygen species, an osteoclast precursor, in a dose-dependent manner. Furthermore, CoQ10 strongly suppressed H2 O2 -induced IκBα, p38 signaling pathways for osteoclastogenesis. In bone formation study, CoQ10 acted to enhance the induction of osteoblastogenic biomarkers including alkaline phosphatase, type 1 collagen, bone sialoprotein, osteoblast-specific transcription factor Osterix, and Runt-related transcription factor 2 and, also promoted matrix mineralization by enhancing bone nodule formation in a dose-dependent manner. Together, CoQ10 acts as an inhibitor of RANKL-induced osteoclast differentiation and an enhancer of bone-forming osteoblast differentiation. These findings highlight the potential therapeutic applications of CoQ10 for the treatment of bone disease.

Moon HJ, Ko WK, Jung MS, Kim JH…
J. Food Sci. May 2013
PMID: 23582186

CoQ10, Selenite, and Curcumin, Inhibit Bone Resorption via Antioxidation

Abstract

Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation.

Coenzyme Q10 (CoQ10), selenium, and curcumin are known to be powerful antioxidants. Osteoclasts are capable of resorbing mineralized bone and excessive bone resorption by osteoclasts causes bone loss-related diseases. During osteoclast differentiation, the reactive oxygen species (ROS) acts as a secondary messenger on signal pathways. In this study, we investigated whether antioxidants can inhibit RANKL-induced osteoclastogenesis through suppression of ROS generation and compared the relative inhibitory activities of CoQ10, sodium selenite, and curcumin on osteoclast differentiation. We found that antioxidants markedly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone marrow-derived monocytes (BMMs) and RAW 264.7 cells. Antioxidants scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. These also acted to significantly suppress the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor (OSCAR), which are genetic markers of osteoclast differentiation in a dose-dependent manner. These antioxidants also suppressed ROS-induced IκBα signaling pathways for osteoclastogenesis. Specially, curcumin displayed the highest inhibitory effect on osteoclast differentiation when concentrations were held constant. Together, CoQ10, selenite, and curcumin act as inhibitors of RANKL-induced NFATc1 which is a downstream event of NF-κB signal pathway through suppression of ROS generation, thereby suggesting their potential usefulness for the treatment of bone disease associated with excessive bone resorption.

Moon HJ, Ko WK, Han SW, Kim DS…
Biochem. Biophys. Res. Commun. Feb 2012
PMID: 22252298

Glucosamine Reduces Anabolic and Catabolic Processes in Chondrocytes In Vitro

Abstract

Glucosamine reduces anabolic as well as catabolic processes in bovine chondrocytes cultured in alginate.

To investigate the working mechanism of glucosamine (GlcN) by studying the effect of different GlcN derivatives on bovine chondrocytes in alginate beads under anabolic and catabolic culture conditions.
Bovine chondrocytes seeded in alginate beads were treated with different concentrations of glucosamine-sulfate (GlcN-S), glucosamine-hydrochloride (GlcN-HCl) or N-acetyl-glucosamine (GlcN-Ac). Culture conditions were anabolic, 3 day pre-culture followed by 14 days’ treatment; catabolic, extracellular matrix (ECM) breakdown induced by 10ng/ml interleukin-1beta (IL-1beta); or a situation with balance between ECM breakdown and synthesis, 24 days’ pre-culture followed by 14 days’ treatment. The outcome measurements were total glycosaminoglycan (GAG) and DNA content per bead.
In the situation with balance between ECM breakdown and synthesis, GlcN-Ac had a small stimulatory effect on total GAG content. GlcN-S and GlcN-HCl had no effect. Under anabolic condition 5mM GlcN-S and GlcN-HCl significantly reduced total GAG content. GlcN-Ac did not show this effect. IL-1beta induced catabolic effects were prevented by adding 5mM GlcN-HCl. Interference of GlcN with glucose (Gluc) was demonstrated by adding extra Gluc to the medium in the anabolic culture conditions. Increasing extracellular Gluc concentrations diminished the effect of GlcN.
GlcN-S and GlcN-HCl, but not GlcN-Ac, reduce anabolic and catabolic processes. For anabolic processes this was demonstrated by decreased ECM synthesis, for catabolic processes by protection against IL-1beta mediated ECM breakdown. This might be due to interference of GlcN with Gluc utilization. We suggest that the claimed structure modifying effects of GlcN are more likely based on protection against ECM degradation than new ECM production.

Uitterlinden EJ, Jahr H, Koevoet JL, Bierma-Zeinstra SM…
Osteoarthr. Cartil. Nov 2007
PMID: 17543549

Review: Glucosamine Might Increase Osteoblasts and Suppress Resorption

Abstract

Biological activities of glucosamine and its related substances.

Glucosamine (GlcN) has been widely used to treat osteoarthritis (OA) in humans. We revealed that among GlcN-derivatives (GlcN and N-acetyl-d-glucosamine) and uronic acids (d-glucuronic acid and d-galacturonic acid), only GlcN induces the production of hyaluronic acid (HA) by synovial cells and chondrocytes, and the production level is much higher (>10-fold) in synovial cells compared with chondrocytes. Moreover, GlcN increases the expression of HA-synthesizing enzymes (HAS) in synovial cells and chondrocytes. These observations indicate that GlcN likely exhibits the chondroprotective action on OA by modulating the expression of HAS and inducing the production of HA (a major component of glycosaminoglycans contained in the synovial fluid) especially by synovial cells. The pathological change of subchondral bone is implicated in the initiation and progression of cartilage damage in OA. Thus, we further determined the effect of GlcN on the bone metabolism (osteoblastic cell differentiation). The results indicated that GlcN increases the mineralization of mature osteoblasts and the expression of middle and late stage markers (osteopontin and osteocalcin, respectively) during osteoblastic differentiation, and reduces the expression of receptor activator of NF-κB ligand (RANKL), a differentiation and activation factor for osteoclasts. These observations likely suggest that GlcN has a potential to induce the osteoblastic cell differentiation and suppress the osteoclastic cell differentiation, thereby increasing bone matrix deposition and decreasing bone resorption to modulate bone metabolism in OA.

Nagaoka I, Igarashi M, Sakamoto K
Adv. Food Nutr. Res. 2012
PMID: 22361198

Glucosamine Inhibits Bone Resorption in Rats

Abstract

Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine.

Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling.
The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry.
The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels.
Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints.

Ivanovska N, Dimitrova P
Arthritis Res. Ther. 2011
PMID: 21410959 | Free Full Text

Glucosamine Accelerates Fracture Repair in Rats

Abstract

Glucosamine-sulfate on fracture healing.

The aim of this study is to determine whether glucosamine-sulfate has any effects on bone-healing.
A unilateral fracture was created in the tibia of sixty-one female rats. Rats were given no drug or 230 mg/kg glucosamine-sulfate daily. Fractures were analyzed during the first, second and fourth weeks after creation of fracture. Quantitative measurement for new bone formation and osteoblast lining were determined histologically. Semiquantitative score for fracture healing was used for histomorphometric analyses. Bridging bone formation was assessed radiographically.
New bone formation and osteoblast lining were significantly higher in glucosamine-treated group at week 1. Surrounding connective tissue was more cellular and vascular, and the newly formed bone trabecules were present in greater amounts in glucosamine-treated group, compared to control group at week 1 and 4. But radiologically, the control group had better scores than that of the glucosamine-treated group at week 4.
These data demonstrate that daily glucosamine-sulfate administration accelerates early phase of fracture repair in the rat tibia, with increased new bone formation and osteoblast lining histologically, but radiologic bone union is not favored on radiographs.

Uğraş A, Güzel E, Korkusuz P, Kaya I…
Ulus Travma Acil Cerrahi Derg Jan 2013
PMID: 23588972 | Free Full Text

Tualang Honey Improves Bone Structure in Ovariectomized Rats

Abstract

Protective effects of Tualang honey on bone structure in experimental postmenopausal rats.

The objective of this study was to evaluate the effects of Tualang honey on trabecular structure and compare these effects with those of calcium supplementation in ovariectomized rats.
Forty female, Sprague-Dawley rats were randomly divided into five groups (n =8): four controls and one test arm. The control arm comprised a baseline control, sham-operated control, ovariectomized control, and ovariectomized calcium-treated rats (receiving 1% calcium in drinking water ad libitum). The test arm was composed of ovariectomized, Tualang honey-treated rats (received 0.2 g/kg body weight of Tualang honey). Both the sham-operated control and ovariectomized control groups received vehicle treatment (deionized water), and the baseline control group was sacrificed without treatment.
All rats were orally gavaged daily for six weeks after day one post-surgery. The bone structural analysis of rats in the test arm group showed a significant increase in the bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and a significant decrease in inter-trabecular space (Tb.Sp) compared with the ovariectomized control group. The trabecular thickness (Tb.Th) in the test arm group was significantly higher compared with the ovariectomized-calcium treated group, and the inter-trabecular space (Tb.Sp) in the test arm group was significantly narrower compared with the ovariectomized-calcium treated group.
In conclusion, ovariectomized rats that received Tualang honey showed more improvements in trabecular bone structure than the rats that received calcium.

Zaid SS, Sulaiman SA, Othman NH, Soelaiman IN…
Clinics (Sao Paulo) Jul 2012
PMID: 22892923 | Free Full Text


From “Review of the Medicinal Effects of Tualang Honey and a Comparison with Manuka Honey

Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The honey is produced by the rock bee (Apis dorsata), which builds hives on branches of tall Tualang trees located mainly in the north-western region of Peninsular Malaysia. This review collates the results of the various studies of TH that range from research on tissue culture to randomised control clinical trials. Findings thus far show that, TH has antimicrobial, anti-inflammatory, antioxidant, antimutagenic, antitumor, and antidiabetic properties, in addition to wound-healing attributes. Some of its properties are similar to the well-researched Manuka honey (New Zealand and/or Australian monofloral honey). Distinct differences include higher phenolics, flavonoids, and 5-(hydroxymethyl) furfural (HMF). Compared with Manuka honey, TH is also more effective against some gram-negative bacterial strains in burn wounds.

 

Arginine and Lysine Have Positive Effect on Osteoblasts In Vitro

Abstract

Human osteopenic bone-derived osteoblasts: essential amino acids treatment effects.

The development of in vitro cell culture methods has made it possible to study bone cell metabolism and growth and obtain a deeper insight into the pathophysiology of common orthopedic diseases such as osteoporosis. After analyzing the effect of two essential amino acids, L-arginine (Arg) and L-lysine (Lys), in previous in vitro and in vivo studies, the present authors investigated the administration of Arg and Lys in osteoblasts derived from human osteopenic bone. After isolation, osteoblasts were cultured in DMEM supplemented with either Arg (0.625 mg/ml/day, Arg Group) or Lys (0.587 mg/ml/day, Lys Group), or both of them (Arg-Lys Group), whereas the Control Group was sham-treated. After 7 days the following parameters were tested in all groups: MTT proliferation test, Alkaline Phosphatase (ALP), Nitric Oxide (NO), Calcium (Ca), Phosphorus (P), Osteocalcin (OC), C-Terminal Procollagen type I (PICP), Interleukin-6 (IL-6), Transforming Growth Factor-beta 1 (TGF-beta 1), Platelet Derived Growth Factor (PDGF) and Insulin-Like Growth Factor-I (IGF-I). Results were compared with those obtained from human healthy bone to verify the effect of the amino acids on osteoblasts derived from pathological tissue. In addition, a comparison was also made with the results obtained from rat osteopenic bone to assess reliability of the in vitro model. The current results support previous findings and indicate that Arg and Lys stimulation has a positive effect on osteoblast proliferation, activation and differentiation. Therefore, administration of these amino acids may be useful in clinical treatment and prevention of osteoporosis.

Torricelli P, Fini M, Giavaresi G, Giardino R
Artif Cells Blood Substit Immobil Biotechnol Feb 2003
PMID: 12602815

Review: Moderate Alcohol May Benefit Bone, but Abuse has Toxic Effect

Abstract

Bone and the ‘comforts of life’.

Coffee drinking, smoking and especially alcohol abuse are considered to be risk factors for fractures and osteoporosis. Caffeine causes acute increase in urinary calcium excretion, but epidemiological evidence for the effects of coffee consumption on the risk of fractures is contradictory. Many, (but not all) studies point to decreased bone mass or increased fracture risk in smokers. Alcohol abuse is associated with deleterious changes in bone structure detected by histomorphometry, and with a decrease in bone mineral density (BMD).

 These changes may also be produced by factors commonly associated with alcohol abuse, e.g. nutritional deficiencies, liver damage and hypogonadism. Alcohol, however, has clear-cut direct effects on bone and mineral metabolism. Acute alcohol intoxication causes transitory hypoparathyroidism with resultant hypocalcaemia and hypercalciuria. As assessed by serum osteocalcin levels, prolonged moderate drinking decreases the function of osteoblasts, the bone-forming cells. In addition, chronic alcoholics are characterized by low serum levels of vitamin D metabolites. Thus, alcohol seems to have a direct toxic effect on bone and mineral metabolism. In contrast, it has recently been reported that moderate alcohol consumption by postmenopausal women may have a beneficial effect on bone.

Laitinen K, Välimäki M
Ann. Med. Aug 1993
PMID: 8217108