Tag Archives: negative

IP-6 Supplementation Causes Thinner Bones in Rats

Abstract

Bone and faecal minerals and scanning electron microscopic assessments of femur in rats fed phytic acid extract from sweet potato (Ipomoea batatas).

Phytic acid was extracted from sweet potato (Ipomoea batatas) and fed to Wistar rats with or without zinc for 3 weeks. Animals were then sacrificed and bone and faecal minerals were assessed. The ultra-structure of the bones was examined via scanning electron microscopy. Phytic acid extract or commercial phytic acid supplemented diets (D + Zn + PE or D + PE) displayed reduced bone calcium levels (101.27 +/- 59.11 and 119.27 +/- 45.36 g/kg) compared to the other test groups. Similarly, reduced calcium were observed in the control groups (D + Zn and D) fed formulated diets with or without zinc supplementation (213.14 +/- 15.31 and 210 +/- 6.88 g/kg) compared to the other test groups. The group fed supplemented commercial phytic acid diet (D + CP) demonstrated the lowest femur magnesium (3.72 +/- 0.13 g/kg) while the group fed phytic acid extract supplementation (D + PE) recorded the highest level (4.84 +/- 0.26 g/kg) amongst the groups. Femur iron was highest in the group fed commercial phytic acid supplemented diet (D + CP -115.74 +/- 2.41 g/kg) compared to the other groups. Faecal magnesium levels were significantly higher in the two test groups fed phytic acid extract with or without zinc (D + Zn + PE or D + PE) compared to all other groups. All the groups which had phytic acid supplemented diets had significantly thinner bone in the trabecular region, compared to the groups fed formulated diet or zinc supplemented formulated diet (D or D + Zn). These observations suggest that the consumption of foods high in phytic acid may contribute to a reduction in the minerals available for essential metabolic processes in rats.

Dilworth L, Omoruyi FO, Reid W, Asemota HN
Biometals Apr 2008
PMID: 17562130

IP-6 Inhibits Mineralization of Mouse Osteoblasts Cultures

Abstract

Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures.

Inositol hexakisphosphate (IP6, phytic acid) is an endogenous compound present in mammalian cells and tissues. Differentially phosphorylated forms of inositol are well-documented to have important roles in signal transduction, cell proliferation and differentiation, and IP6 in particular has been suggested to inhibit soft tissue calcification (specifically renal and vascular calcification) by binding extracellularly to calcium oxalate and calcium phosphate crystals. However, the effects of IP6 on bone mineralization are largely unknown. In this study, we used MC3T3-E1 osteoblast cultures to examine the effects of exogenous IP6 on osteoblast function and matrix mineralization. IP6 at physiologic concentrations caused a dose-dependent inhibition of mineralization without affecting cell viability, proliferation or collagen deposition. Osteoblast differentiation markers, including tissue-nonspecific alkaline phosphatase activity, bone sialoprotein and osteocalcin mRNA levels, were not adversely affected by IP6 treatment. On the other hand, IP6 markedly increased protein and mRNA levels of osteopontin, a potent inhibitor of crystal growth and matrix mineralization. Inositol alone (without phosphate), as well as inositol hexakis-sulphate, a compound with a high negative charge similar to IP6, had no effect on mineralization or osteopontin induction. Binding of IP6 to mineral crystals from the osteoblast cultures, as well as to synthetic hydroxyapatite crystals, was confirmed by a colorimetric assay for IP6. In summary, IP6 inhibits mineralization of osteoblast cultures by binding to growing crystals through negatively charged phosphate groups and by induction of inhibitory osteopontin expression. These data suggest that IP6 may regulate physiologic bone mineralization by directly acting extracellularly, and by serving as a specific signal at the cellular level for the regulation of osteopontin gene expression.

Addison WN, McKee MD
Bone Apr 2010
PMID: 20079473

Iron Overload Inhibits Osteoblasts via Oxidative Stress

Abstract

Iron overload inhibits osteoblast biological activity through oxidative stress.

Iron overload has recently been connected with bone mineral density in osteoporosis. However, to date, the effect of iron overload on osteoblasts remains poorly understood. The purpose of this study is to examine osteoblast biological activity under iron overload. The osteoblast cells (hFOB1.19) were cultured in a medium supplemented with different concentrations (50, 100, and 200 μM) of ferric ammonium citrate as a donor of ferric ion. Intracellular iron was measured with a confocal laser scanning microscope. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescin diacetate fluorophotometry. Osteoblast biological activities were evaluated by measuring the activity of alkaline phosphatase (ALP) and mineralization function. Results indicated that iron overload could consequently increase intracellular iron concentration and intracellular ROS levels in a concentration-dependent manner. Additionally, ALP activity was suppressed, and a decline in the number of mineralized nodules was observed in in vitro cultured osteoblast cells. According to these results, it seems that iron overload probably inhibits osteoblast function through higher oxidative stress following increased intracellular iron concentrations.

He YF, Ma Y, Gao C, Zhao GY…
Biol Trace Elem Res May 2013
PMID: 23334864

Mild Low Iron Promotes Osteoblasts; Excess or Serious Low Iron Bad In Vitro

Abstract

A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency.

Bone metabolism has a close relationship with iron homeostasis. To examine the effects of iron excess and iron deficiency on the biological activities of osteoblast in vitro, human osteoblast cells (hFOB1.19) were incubated in a medium supplemented with 0-200 μmol/L ferric ammonium citrate and 0-20 μmol/L deferoxamine. The intracellular iron was measured by a confocal laser scanning microscope. Proliferation of osteoblasts was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apoptotic cells were detected using annexin intervention V/PI staining with a flow cytometry. Alkaline phosphatase (ALP) activity was measured using an ALP assay kit. The number of calcified nodules and mineral area was evaluated by von Kossa staining assay. The expressions of type I collagen and osteocalcin of cultured osteoblasts were detected by reverse transcriptase polymerase chain reaction and Western blot. Intracellular reactive oxygen species (ROS) was measured using the oxidation-sensitive dye 2,7-dichlorofluorescin diacetate by flow cytometry. The results indicated that excessive iron inhibited osteoblast activity in a concentration-dependent manner. Low iron concentrations, in contrast, produced a biphasic manner on osteoblasts: mild low iron promoted osteoblast activity, but serious low iron inhibited osteoblast activity. Osteogenesis was optimal in certain iron concentrations. The mechanism underlying biological activity invoked by excessive iron may be attributed to increased intracellular ROS levels.

Zhao GY, Zhao LP, He YF, Li GF…
Biol Trace Elem Res Dec 2012
PMID: 23054865

Iron Overload Inhibits Osteoblasts in Mouse and Rat Cells

Abstract

Excess iron inhibits osteoblast metabolism.

Hemochromatosis is an iron overload disorder associated with osteopenia and osteoporosis. To learn more about the effects of iron on bone cells, we examined the effects of ferric ion on the proliferation, differentiation, and mineralization of two types of cultured osteoblasts, the cell line MC3T3-E1 and rat calvarial osteoblast-like (ROB) cells. We used ferric ammonium citrate (FAC) as a donor of ferric ion, and FAC inhibited the proliferation of MC3T3-E1 cells in a dose-dependent manner. FAC (0.1-1 microg/ml) inhibited indices of osteoblast differentiation, such as the expression of type I collagen (mRNA and protein), the activity of alkaline phosphatase, and the deposition of calcium by osteoblasts. These results suggest that iron overload might give rise to osteoporosis by inhibiting osteoblast proliferation and differentiation.

Yamasaki K, Hagiwara H
Toxicol. Lett. Dec 2009
PMID: 19735707

Iron Increase Associated with Decreased Bone Density During Spaceflight

Abstract

Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station.

Increases in stored iron and dietary intake of iron during space flight have raised concern about the risk of excess iron and oxidative damage, particularly in bone.
The objectives of this study were to perform a comprehensive assessment of iron status in men and women before, during, and after long-duration space flight and to quantify the association of iron status with oxidative damage and bone loss.
Fasting blood and 24-h urine samples were collected from 23 crew members before, during, and after missions lasting 50 to 247 d to the International Space Station.
Serum ferritin and body iron increased early in flight, and transferrin and transferrin receptors decreased later, which indicated that early increases in body iron stores occurred through the mobilization of iron to storage tissues. Acute phase proteins indicated no evidence of an inflammatory response during flight. Serum ferritin was positively correlated with the oxidative damage markers 8-hydroxy-2′-deoxyguanosine (r = 0.53, P < 0.001) and prostaglandin F2α (r = 0.26, P < 0.001), and the greater the area under the curve for ferritin during flight, the greater the decrease in bone mineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis (P = 0.049) after flight.
Increased iron stores may be a risk factor for oxidative damage and bone resorption.

Zwart SR, Morgan JL, Smith SM
Am. J. Clin. Nutr. Jul 2013
PMID: 23719548

Too Much Zinc Reduces Bone Density in Rats

Abstract

Marginal zinc deficiency exacerbates bone lead accumulation and high dietary zinc attenuates lead accumulation at the expense of bone density in growing rats.

Environmental lead exposure is associated with reduced bone growth and quality, which may predispose to osteoporosis. Zinc supplementation may reduce lead accumulation; however, effects on bone development have not been addressed. Our objective was to investigate the effects of marginal zinc (MZ) and supplemental zinc (SZ) intakes on bone lead deposition and skeletal development in lead-exposed rats. In a factorial design, weanling Sprague-Dawley rats were assigned to MZ (8 mg/kg diet); zinc-adequate control (CT; 30 mg/kg); zinc-adequate, diet-restricted (DR; 30 mg/kg); or SZ (300 mg/kg) groups, with and without lead acetate-containing drinking water (200 mg Pb/l) for 3 weeks. Excised femurs were analyzed for bone mineral density (BMD) by dual-energy x-ray absorptiometry, morphometry, and mineral content. MZ had higher femur lead and lower femur zinc concentrations and impaired skeletal growth and mineralization than CT. DR inhibited growth but did not result in higher femur lead concentrations than CT. SZ had higher femur zinc and lower femur lead concentrations than the other treatments. DR and SZ had impaired BMD versus CT and MZ. Lead also retarded skeletal growth and impaired BMD, but an interaction between lead and MZ was only found for femoral knee width, which was lower in MZ exposed to lead. In summary, while MZ deficiency exacerbated bone lead concentration, it generally did not intensify lead toxicity. SZ was protective against bone lead but was detrimental to BMD, suggesting that the optimal level of SZ to reduce lead absorption, while supporting growth and bone development, requires further investigation.

Jamieson JA, Taylor CG, Weiler HA
Toxicol. Sci. Jul 2006
PMID: 16624848 | Free Full Text

Magnesium Reduces Bone Formation and Resorption in Young Men

Abstract

Daily oral magnesium supplementation suppresses bone turnover in young adult males.

This study examined the effects of daily oral magnesium (Mg) supplementation on bone turnover in 12 young (27-36 yr old) healthy men. Twelve healthy men of matching age, height, and weight were recruited as the control group. The study group received orally 15 mmol Mg (Magnosolv powder, Asta Medica) daily in the early afternoon with 2-h fasting before and after Mg intake. Fasting blood and second void urine samples were collected in the early morning on days 0, 1, 5, 10, 20, and 30, respectively. Total and ionized Mg2+ and calcium (Ca2+), and intact PTH (iPTH) levels were determined in blood samples. Serum biochemical markers of bone formation (i.e. C-terminus of type I procollagen peptide and osteocalcin) and resorption (i.e. type I collagen telopeptide) and urinary Mg level adjusted for creatinine were measured. In these young males, 30 consecutive days of oral Mg supplementation had no significant effect on total circulating Mg level, but caused a significant reduction in the serum ionized Mg+ level after 5 days of intake. The Mg supplementation also significantly reduced the serum iPTH level, which did not appear to be related to changes in serum Ca2+ because the Mg intake had no significant effect on serum levels of either total or ionized Ca2+. There was a strong positive correlation between serum iPTH and ionized Mg2+ (r = 0.699; P < 0.001), supporting the contention that decreased serum iPTH may be associated with the reduction in serum ionized Mg2+. Mg supplementation also reduced levels of both serum bone formation and resorption biochemical markers after 1-5 days, consistent with the premise that Mg supplementation may have a suppressive effect on bone turnover rate. Covariance analyses revealed that serum bone formation markers correlated negatively with ionized Mg2+ (r = -0.274 for type I procollagen peptide and -0.315 for osteocalcin), but not with iPTH or ionized Ca2+. Thus, the suppressive effect on bone formation may be mediated by the reduction in serum ionized Mg2+ level (and not iPTH or ionized Ca2+). In summary, this study has demonstrated for the first time that oral Mg supplementation in normal young adults caused reductions in serum levels of iPTH, ionized Mg2+, and biochemical markers of bone turnover. In conclusion, oral Mg supplementation may suppress bone turnover in young adults. Because increased bone turnover has been implicated as a significant etiological factor for bone loss, these findings raise the interesting possibility that oral Mg supplementation may have beneficial effects in reducing bone loss associated with high bone turnover, such as age-related osteoporosis.

Dimai HP, Porta S, Wirnsberger G, Lindschinger M…
J. Clin. Endocrinol. Metab. Aug 1998
PMID: 9709941

Review: Vitamin A Increases Fracture Risk at 2x Recommended Intake

Abstract

Vitamin A intake and osteoporosis: a clinical review.

If osteoporosis is linked with vitamin A (Vit A) A consumption, millions of people could be affected. A MEDLINE search was performed with keywords retinol, beta-carotene, and osteoporosis. Of 20 clinical studies, 3 were randomized controlled trials (RCTs), 14 were observational studies, and 3 were case reports. Most (8) observational studies were cross-sectional. Oral retinoyl palmitate (RP) in high doses induces fractures and radiographic osteoporosis in animals. Retinol intake from diet or supplements is negatively associated with lumbar, femoral neck, and trochanter bone mineral density (BMD). There is a graded increase in relative risk of hip fracture with increasing retinol intake, attributable primarily to retinol (either from diet or supplements) but not beta-carotene intake. Higher serum retinol levels are associated with higher risk of any fracture and with higher risk of hip fracture, whereas there is no evidence of harm associated with beta-carotene intake. The few RCTs involve serum markers of bone metabolism, not bone density or fracture outcomes. Observational studies are generally consistent in finding harm from either dietary or supplemental retinol intake on BMD and hip fracture risk. Total Vit A intake is more important than source in determining harm. Adverse effects may occur at a level of retinol intake that is only about twice the current recommendation for adult females.
It is not yet possible to set a specific level of retinol intake above which bone health is compromised. Pending further investigation, Vit A supplements should not be used with the express goal of improving bone health.

Crandall C
J Womens Health (Larchmt) Oct 2004
PMID: 15671709


The recommended dietary allowance (RDA) for Vitamin as preformed Vitamin A (Retinol Activity Equivalents) is 700 mcg (or 2,333 IU). This article suggests that twice that, or 4666 IU, increases fracture risk.

Comment: Cycling and bone health: a systematic review

Abstract

Bike racing, recreational riding, impact sport and bone health.

Cycling has been shown to confer considerable benefits in terms of health, leading to reductions in death rates principally due to cardiovascular improvements and adaptation. Given the disparity between the benefits of cycling on cardiovascular fitness and previous research finding that cycling may not be beneficial for bone health, Hugo Olmedillas and colleagues performed a systematic review of the literature. They concluded that road cycling does not appear to confer any significant osteogenic benefit. They postulate that the cause of this is that, particularly at a competitive level, riders spend long periods of time in a weight-supported position on the bike. Training programs may be supplemented with impact loading to preserve bone health; however, the small increased risk of soft tissue injury must also be considered. See related study.

Carmont MR
BMC Med 2012
PMID: 23256478 | Free Full Text