Tag Archives: in vivo

Tongkat Ali Maintains Bone Calcium in Orchidectomised Rats

Abstract

The anti-osteoporotic effect of Eurycoma Longifolia in aged orchidectomised rat model.

Osteoporosis in elderly men is becoming an important health issue with the aging society. Elderly men with androgen deficiency are exposed to osteoporosis and can be treated with testosterone replacement. In this study, Eurycoma longifolia (EL), a plant with androgenic effects, was supplemented to an androgen-deficient osteoporotic aged rat as alternative to testosterone. Aged 12 months old Sprague-Dawley rats were divided into groups of normal control (NC), sham-operated (SO), orchidectomised-control (OrxC), orchidectomised and supplemented with EL (Orx + El) and orchidectomised and given testosterone (Orx + T). After 6 weeks of treatment, serum osteocalcin, serum terminal C-telopeptide Type 1 collagen (CTX) and the fourth lumbar bone calcium were measured. There were no significant differences in the osteocalcin levels before and after treatment in all the groups. The CTX levels were also similar for all the groups before treatment. However, after treatment, orchidectomy had caused significant elevation of CTX compared to normal control rats. Testosterone replacements in orchidectomised rats were able to prevent the rise of CTX. Orchidectomy had also reduced the bone calcium level compared to normal control rats. Both testosterone replacement and EL supplementation to orchidectomised rats were able to maintain the bone calcium level, with the former showing better effects. As a conclusion, EL prevented bone calcium loss in orchidectomised rats and therefore has the potential to be used as an alternative treatment for androgen deficient osteoporosis.

Shuid AN, Abu Bakar MF, Abdul Shukor TA, Muhammad N…
Aging Male Sep 2011
PMID: 20874437

Onobrychis Ebenoides Has SERM-Like Activity in Ovariectomized Rats

Abstract

Protective effect of plant extract from Onobrychis ebenoides on ovariectomy-induced bone loss in rats.

Certain plant extracts have been the object of recent studies due to their mild estrogenic action and their possible potential role in osteoporosis prevention and/or treatment. The present study was undertaken to investigate the possible protective effect of the aqueous solution of the plant Onobrychis ebenoides, with proven in vitro mild estrogenic action, on bone mass loss of the ovariectomized (Ovx) rat experimental model of osteoporosis.
Forty intact female mature (10-month-old) Wistar rats were separated into three groups: Ovx, Ovx plus plant extract (Ph) and sham-operated (control). Ph administration in the drinking water at a dose of 300 mg/kg body weight/day commenced immediately after Ovx. Bone mineral density (BMD) values, percentage change from the baseline measurement and histomorphometry of the tibia, as well as body and uterine weight, were examined and compared between groups.
Comparison of BMD absolute values of the whole tibia of Ovx + Ph and Ovx animals at both 3 and 6 months post-Ovx were highly significant (p < 0.0005), showing a protective effect on treated animals. The extract did not appear to have such a beneficial effect on BMD of the proximal tibia of the treated animals compared to the Ovx animals after 3 months; however, a significant protective effect was observed at 6 months post-Ovx in treated animals compared to the Ovx (p = 0.015). When the % changes from baseline measurement of the whole tibia of Ovx + Ph and controls were compared, there was no significant difference at 3 or 6 months, demonstrating a highly protective effect; the respective comparisons of proximal tibia % changes did not display such protection. Body and uterine weight comparisons showed no significant difference between Ovx and treated rats, whereas, the level of significance for each group compared to controls was p < 0.0005.
The Ph studied showed a highly significant protective effect on BMD of the whole tibia of Ovx rats after 3 and 6 months of treatment, compared to the non-treated animals. Its effect on the proximal tibia was less pronounced, but also statistically significant compared to non-treated rats after 6 months. The lack of significant effect on body and uterine weight is in favor of its selective estrogen receptor modulator-like activity, and merits further studies.

Dontas I, Halabalaki M, Moutsatsou P, Mitakou S…
Maturitas Jan 2006
PMID: 15979258

Whey Acidic Protein Fractions Increases Bone Density and Elasticity in Ovariectomised Rat

Abstract

The effect of whey acidic protein fractions on bone loss in the ovariectomised rat.

Bovine milk has been shown to contain bioactive components with bone-protective properties. Earlier studies on bovine milk whey protein showed that it suppressed bone resorption in the female ovariectomised rat. A new osteotropic component was subsequently identified in the whey basic protein fraction, but bone bioactivity may also be associated with other whey fractions. In the present study, we investigated whether acidic protein fractions isolated from bovine milk whey could prevent bone loss in mature ovariectomised female rats. Six-month-old female rats were ovariectomised (OVX) or left intact (sham). The OVX rats were randomised into four groups. One group remained the control (OVX), whereas three groups were fed various whey acidic protein fractions from milk whey as 3 g/kg diet for 4 months. Outcomes were bone mineral density, bone biomechanics and markers of bone turnover. Bone mineral density of the femurs indicated that one of the whey AF over time caused a recovery of bone lost from OVX. Plasma C-telopeptide of type I collagen decreased significantly in all groups except OVX control over time, indicating an anti-resorptive effect of whey acidic protein. Biomechanical data showed that the AF may affect bone architecture as elasticity was increased by one of the whey AF. The femurs of AF-supplemented rats all showed an increase in organic matter. This is the first report of an acidic whey protein fraction isolated from milk whey that may support the recovery of bone loss in vivo.

Kruger MC, Plimmer GG, Schollum LM, Haggarty N…
Br. J. Nutr. Aug 2005
PMID: 16115359

Nitroglycerin Modestly Increases Bone Density and Decreased Resorption in Postmenopausal Women

Abstract

Effect of nitroglycerin ointment on bone density and strength in postmenopausal women: a randomized trial.

Nitroglycerin stimulates bone formation and inhibits bone resorption, is inexpensive, and is widely available. Its effects on bone density, bone structure, and bone strength are unknown. To determine if nitroglycerin increases lumbar spine bone mineral density (BMD) and to evaluate changes in hip BMD, bone geometry, and density at the radius and tibia, and markers of bone turnover.

A single-center, double-blind, placebo-controlled randomized trial conducted in Toronto, Ontario, Canada, for 24 months starting in November 2005 and completed in March 2010, of 243 postmenopausal women with lumbar spine T scores of between 0 and -2.0 who completed a 1-week run-in period taking nitroglycerin ointment. Intervention Nitroglycerin ointment (15 mg/d) or placebo applied at bedtime for 24 months.
Areal BMD at the lumbar spine, femoral neck, and total hip. Secondary outcomes included indices of bone geometry and strength at the distal radius and tibia, and biomarkers of bone formation (bone-specific alkaline phosphatase) and bone resorption (urine N -telopeptide).
At 2 years, women randomized to the nitroglycerin group had significant increases in areal BMD at the lumbar spine (from 1.05 to 1.14 g/cm(2) vs placebo from 1.06 to 1.08 g/cm(2); percentage change, 6.7%; 95% confidence interval [CI], 5.2%-8.2%; P < .001); total hip (from 0.92 to 0.97 g/cm(2) vs placebo from 0.93 to 0.92 g/cm(2); 6.2%; 95% CI, 5.6%-7.0%; P < .001); and femoral neck (from 0.88 to 0.93 g/cm(2) vs placebo from 0.87 to 0.86 g/cm(2); 7.0%; 95% CI, 5.5%-8.5%; P < .001). At 2 years, nitroglycerin also increased volumetric trabecular BMD (11.9% and 8.5%), cortical thickness (13.9% and 24.6%), periosteal circumference (7.4% and 2.9%), polar section modulus (10.7% and 9.8%), and polar moment of inertia (7.3% and 14.5%) at the radius and tibia, respectively (all P < .001); and increased bone-specific alkaline phosphatase by 34.8% and decreased urine N -telopeptide by 54.0% (P < .001). Incidence of serious adverse events did not differ between nitroglycerin (5 [4.2%]) and placebo (5 [4.3%]) groups. Among those women who continued treatment for 24 months, headaches were reported by 40 (35%) in nitroglycerin and 6 (5.4%) in placebo groups during the first month, decreasing substantially after 12 months.
Among postmenopausal women, nitroglycerin ointment modestly increased BMD and decreased bone resorption.

Jamal SA, Hamilton CJ, Eastell R, Cummings SR
JAMA Feb 2011
PMID: 21343579


There is a published comment on this study: Nitroglycerin needs more study.

Davallic acid from Davallia Formosana Inhibits Bone Resorption in Ovariectomized Rats

Abstract

Antiosteoporotic activity of Davallia formosana.

In Taiwanese folk medicine, Davallia formosana is used to treat bone diseases, including osteoporosis. This study evaluated the anti-osteoporotic effect of ethanolic extract derived from Davallia formosana (DFE). In this in vitro study, we investigated the inhibitory action of DFE on RANKL-stimulated osteoclastogenesis. The in vivo effects of DFE on bone metabolism were evaluated using ovariectomized (OVX) rats orally administered DFE (200, 500 mg/kg), alendronate (2.5 mg/kg, three times a week) or its vehicle for 12 weeks.
This in vitro study demonstrated that DFE inhibited osteoclast differentiation, and also isolated the active component, (-)-epicatechin 3-O-β-D-allopyranoside (ECAP). DFE did not affect the body or vaginal weight in OVX rats. The bone mineral density and bone calcium content in OVX rats were lower in the control group showing that DFE was able to prevent significant bone loss. In addition, the three point bending test and the microcomputer tomography scanning showed that DFE treatment enhanced bone strength and inhibited the deterioration of trabecular microarchitecture. In the biochemical assay, DFE decreased urinary deoxypyridinoline and calcium concentrations, but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone reabsorption. These results suggest that DFE may represent a useful remedy for the treatment of bone reabsorption diseases such as osteoporosis. In addition, ECAP could be used as a marker compound to control the quality of DFE.

Ko YJ, Wu JB, Ho HY, Lin WC
J Ethnopharmacol Jan 2012
PMID: 22155390

p-Hydroxycinnamic Acid Prevents Bone Loss in Diabetic Rats

Abstract

Oral administration of phytocomponent p-hydroxycinnamic acid has a preventive effect on bone loss in streptozotocin-induced diabetic rats.

The phytocomponent p-hydroxycinnamic acid (HCA) has been shown to have a stimulatory effect on bone formation and an inhibitory effect on bone resorption in rat femoral tissues in vitro. The preventive effect of HCA on bone loss induced in streptozotocin (STZ)-diabetic rats was investigated in vivo. Rats received a single subcutaneous administration of STZ (6.0 mg/100 g body weight), and then the animals were orally administered HCA (0.25, 0.5, or 1.0 mg/100 g body weight) once daily for 14 days. STZ administration caused a significant decrease in body weight and a significant increase in serum glucose, triglyceride, and calcium levels, indicating a diabetic state. These alterations were significantly prevented by administration of HCA (0.25, 0.5, or 1.0 mg/100 g). Calcium content in the femoral-diaphyseal and -metaphyseal tissues was significantly decreased in STZ-diabetic rats. This decrease was significantly prevented after administration of HCA (0.25, 0.5, or 1.0 mg/100 g). Alkaline phosphatase activity in the diaphyseal and metaphyseal tissues was significantly decreased in STZ-diabetic rats. The decrease in diaphyseal alkaline phosphatase activity in STZ-diabetic rats was significantly prevented after administration of HCA (0.5 and 1.0 mg/l00 g). The diaphyseal DNA content was also significantly decreased in STZ-diabetic rats. Administration of HCA (0.25, 0.5, or 1.0 mg/100 g) caused a significant increase in DNA content in the diaphyseal and metaphyseal tissues in STZ-diabetic rats. This study demonstrates that the intake of HCA has preventive effects on bone loss in STZ-diabetic rats, and that the intake has partially restorative effects on serum biochemical findings in the diabetic state.

Yamaguchi M, Uchiyama S, Lai YL
Int. J. Mol. Med. May 2007
PMID: 17390086

p-Hydroxycinnamic Acid Prevents Bone Loss in Ovariectomized Rats

Abstract

Oral administration of phytocomponent p-hydroxycinnamic acid prevents bone loss in ovariectomized rats.

The preventive effect of phytocomponent p-hydroxycinnamic acid (HCA) on ovariectomy (OVX)-induced bone loss was investigated. HCA (250 or 500 microg/100 g body weight) was orally administered once daily for 30 days to OVX rats. The analysis using a peripheral quantitative computed tomography (pQCT) showed that OVX caused bone loss in the femoral-metaphyseal tissues. This change was significantly restored after the administration of HCA (250 or 500 microg/100 g body weight) to OVX rats. Mineral content, mineral density, and polar strength strain index in the femoral-metaphyseal tissues were significantly decreased in OVX rats. These decreases were significantly restored after the administration of HCA (500 microg/100 g) to OVX rats. Moreover, OVX caused a significant decrease in calcium content or alkaline phosphatase activity in the femoral-diaphyseal and -metaphyseal tissues. These decreases were significantly restored after the administration of HCA (250 or 500 microg/100 g) to OVX rats. Deoxyribonucleic acid (DNA) content in the diaphyseal or metaphyseal tissues was significantly increased in OVX rats. These increases were significantly restored after oral administration of HCA (500 microg/100 g). This study demonstrates that HCA has preventive effects on OVX-induced bone loss of rats in vivo.

Yamaguchi M, Lai YL, Uchiyama S, Nakagawa T
Mol. Cell. Biochem. Apr 2008
PMID: 18165927

Mountain Tea Protects Bone in Ovariectomized Rats

Abstract

Protective effect of Sideritis euboea extract on bone mineral density and strength of ovariectomized rats.

The aim of this study was to investigate the potential protective effect of Sideritis euboea extract (SID), commonly consumed as “mountain tea,” on bone mineral density (BMD) and the strength of the ovariectomized (OVX) rat model of osteoporosis.
Thirty-two 10-month-old Wistar rats were separated into controls (sham operated), OVX, and OVX plus SID in their drinking water (dose, 330 mg/kg body weight per day), starting immediately after OVX for 6 months. Tibial BMD at baseline and at 3 and 6 months post-OVX, three-point-bending of the femur, and body and uterine weight at the study end were examined.
BMD percentage change from baseline of the whole tibia was similar in control and OVX + SID rats at 3 months (-3.02% vs -4.67%, P = not significant), revealing a strong osteoprotective effect. At 6 months, the corresponding changes were -6.02% versus -14.37%, P < 0.05, indicating a greater bone loss in treated rats, albeit significantly less than the OVX change (-20.46%; OVX vs OVX + SID, P < 0.05). The proximal (metaphyseal) tibial BMD percentage change from baseline to 3 and 6 months between the OVX and OVX + SID groups (-26.47% vs -15.57% and -31.22% vs -16.57%, respectively) was statistically significant, demonstrating that SID preserved the proximal tibial BMD of the OVX + SID group significantly. Three-point-bending showed a significant increase in the treated compared with the OVX groups. Body and uterine weights were similar in the OVX and treated groups.
SID significantly protected tibial bone loss and improved femoral biomechanical strength in OVX + SID rats compared with OVX rats.

Dontas IA, Lelovas PP, Kourkoulis SK, Aligiannis N…
Menopause Aug 2011
PMID: 21505372

Tetracyclines Prevent Bone Loss Induced by Inflammation

Abstract

Tetracyclines convert the osteoclastic-differentiation pathway of progenitor cells to produce dendritic cell-like cells.

Tetracyclines, such as doxycycline and minocycline, are used to suppress the growth of bacteria in patients with inflammatory diseases. Tetracyclines have been shown to prevent bone loss, but the mechanism involved is unknown. Osteoclasts and dendritic cells (DCs) are derived from common progenitors, such as bone marrow-derived macrophages (BMMs). In this article, we show that tetracyclines convert the differentiation pathway, resulting in DC-like cells not osteoclasts. Doxycycline and minocycline inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis of BMMs, but they had no effects on cell growth and phagocytic activity. They influenced neither the proliferation nor the differentiation of bone-forming osteoblasts. Surprisingly, doxycycline and minocycline induced the expression of DC markers, CD11c and CD86, in BMMs in the presence of RANKL. STAT5 is involved in DC differentiation induced by GM-CSF. Midostaurin, a STAT5-signaling inhibitor, and an anti-GM-CSF-neutralizing Ab suppressed the differentiation induced by GM-CSF but not by tetracyclines. In vivo, the injection of tetracyclines into RANKL-injected mice and RANKL-transgenic mice suppressed RANKL-induced osteoclastogenesis and promoted the concomitant appearance of CD11c(+) cells. These results suggested that tetracyclines prevent bone loss induced by local inflammation, including rheumatoid arthritis and periodontitis, through osteoclast-DC-like cell conversion.

Kinugawa S, Koide M, Kobayashi Y, Mizoguchi T…
J. Immunol. Feb 2012
PMID: 22250082 | Free Full Text

Minocycline Increases Bone Density in Ovariectomized Rats

Abstract

Treatment of osteoporosis with MMP inhibitors.

In the current study, we examined the effects of minocycline on the osteopenia of ovariectomized (OVX) aged rats using the marrow ablation model. This injury induces rapid bone formation followed by bone resorption in the marrow cavity. Old female rats were randomly divided into five groups: sham, OVX, OVX + minocycline (5-15 mg/day, orally), OVX + 17 beta-estradiol (25 micrograms/day, subcutaneously), and OVX + both agents. Rats were OVX, treated with minocycline and/or estrogen, followed by marrow ablation. Bone samples were collected 16 days post-marrow ablation. X-ray radiography of bones operated on showed that treatment of OVX old rats with minocycline increased bone mass in diaphyseal region. Diaphyseal bone mineral density (BMD) was measured by DEXA scan. Diaphyseal BMD of OVX rats was increased 17-25% by treatment with 5-15 mg of minocycline or 17 beta-estradiol. The effects of minocycline and estrogen treatments on the expression of osteoblast and osteoclast markers were also examined. Northern and dot blot analysis of RNA samples showed that treatment of OVX aged rats with minocycline increased the expression of type I collagen (COL I) (49%) and decreased that of interleukin-6 (IL-6) (31%). In contrast, estrogen treatment decreased the expression of interleukin-6 (IL-6) (39%), carbonic anhydrase II (CA II) (36%), and osteopontin (OP) (37%). Neither minocycline nor 17 beta-estradiol had an effect on the expression of osteocalcin (OC) and alkaline phosphatase (AP). To elucidate the mechanism by which minocycline prevented the loss of bone in OVX aged rats, we examined the colony-formation potential of bone marrow stromal cells in ex vivo cultures. Minocycline stimulated the colony-forming efficiency of marrow stromal cells derived from old animals. We have therefore concluded that the modest increase in BMD noted in OVX aged rats, in response to minocycline treatment, may be due to a change in bone remodeling that favors bone formation; and the anabolic effect of minocycline is likely due to its effect on the expression of COL I and/or the metabolism of osteoprogenitor cells.

Williams S, Barnes J, Wakisaka A, Ogasa H…
Ann. N. Y. Acad. Sci. Jun 1999
PMID: 10415730