Tag Archives: in vitro

Taurine Stimulates Osteoblast Growth Markers In Vitro

Abstract

Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells.

Taurine is present in a variety of tissues and exhibits many important physiological functions in the cell. Even though its functions are well documented in many tissues, its actions on bone cells are largely unknown. Considering a recent finding that taurine is present in the bone, we wished to determine if taurine could have any effects on osteoblast cells. Taurine (10 mM) stimulated alkaline phosphatase activity as well as collagen synthesis. Taurine also stimulated tyrosine phosphorylation of a number of cellular proteins including a 42-kDa protein. The 42-kDa protein was identified as extracellular signal regulated protein kinase 2 (ERK2). A mitogen-activated protein kinase kinase (MEK) inhibitor blocked the taurine-stimulated alkaline phosphatase activity and collagen synthesis. These results suggest that taurine could regulate osteoblast metabolism via ERK2 activation.

Park S, Kim H, Kim SJ
Biochem. Pharmacol. Oct 2001
PMID: 11597579

Taurine Inhibits Osteoblast Apoptosis in Mouse Cells

Abstract

Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway.

Taurine has positive effects on bone metabolism. However, the effects of taurine on osteoblast apoptosis in vitro have not been reported. The aim of this study was to investigate the activity of taurine on apoptosis of mouse osteoblastic MC3T3-E1 cells. The data showed that 1, 5, 10, or 20 mM taurine resulted in 16.7, 34.2, 66.9, or 63.75% reduction of MC3T3-E1 cell apoptosis induced by the serum deprivation (serum-free α-MEM), respectively. Taurine (1, 5, or 10 mM) also reduced cytochrome c release and inhibited activation of caspase-3 and -9, which were measured using fluorogenic substrates for caspase-3/caspase-9, in serum-deprived MC3T3-E1 cells. Furthermore, taurine (10 mM) induced extracellular signal-regulated kinase (ERK) phosphorylation in MC3T3-E1 cells. Knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 (10 μM) blocked the activation of ERK induced by taurine (10 mM) and abolished the anti-apoptotic effect of taurine (10 mM) in MC3T3-E1 cells. The present results demonstrate for the first time that taurine inhibits serum deprivation-induced osteoblast apoptosis via the TAUT/ERK signaling pathway.

Zhang LY, Zhou YY, Chen F, Wang B…
Braz. J. Med. Biol. Res. Jul 2011
PMID: 21710101 | Free Full Text

Ghrelin Stimulates Bone Formation in Rat Osteoblasts

Abstract

Ghrelin directly regulates bone formation.

To clarify the role of ghrelin in bone metabolism, we examined the effect of ghrelin in vitro and in vivo. Ghrelin and its receptor, GHS-R1a, were identified in osteoblasts, and ghrelin promoted both proliferation and differentiation. Furthermore, ghrelin increased BMD in rats. Our results show that ghrelin directly affects bone formation.
Ghrelin is a gut peptide involved in growth hormone (GH) secretion and energy homeostasis. Recently, it has been reported that the adipocyte-derived hormone leptin, which also regulates energy homeostasis and opposes ghrelin’s actions in energy homeostasis, plays a significant role in bone metabolism. This evidence implies that ghrelin may modulate bone metabolism; however, it has not been clarified. To study the role of ghrelin in skeletal integrity, we examined its effects on bone metabolism both in vitro and in vivo.
We measured the expression of ghrelin and growth hormone secretagogue receptor 1a (GHS-R1a) in rat osteoblasts using RT-PCR and immunohistochemistry (IHC). The effect of ghrelin on primary osteoblast-like cell proliferation was examined by recording changes in cell number and the level of DNA synthesis. Osteoblast differentiation markers (Runx2, collagen alpha1 type I [COLI], alkaline phosphatase [ALP], osteocalcin [OCN]) were analyzed using quantitative RT-PCR. We also examined calcium accumulation and ALP activity in osteoblast-like cells induced by ghrelin. Finally, to address the in vivo effects of ghrelin on bone metabolism, we examined the BMD of Sprague-Dawley (SD) rats and genetically GH-deficient, spontaneous dwarf rats (SDR).
Ghrelin and GHS-R1a were identified in osteoblast-like cells. Ghrelin significantly increased osteoblast-like cell numbers and DNA synthesis in a dose-dependent manner. The proliferative effects of ghrelin were suppressed by [D-Lys(3)]-GHRP-6, an antagonist of GHS-R1a, in a dose-dependent manner. Furthermore, ghrelin increased the expression of osteoblast differentiation markers, ALP activity, and calcium accumulation in the matrix. Finally, ghrelin definitely increased BMD of both SD rats and SDRs.
These observations show that ghrelin directly stimulates bone formation.

Fukushima N, Hanada R, Teranishi H, Fukue Y…
J. Bone Miner. Res. May 2005
PMID: 15824852

Phenytoin Inhibits Osteoclasts in Mice

Abstract

Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling.

Diphenylhydantoin (DPH) is widely used as an anticonvulsant drug. We examined the effects of DPH on osteoclast differentiation and function using in vivo and in vitro assay systems. Transgenic mice overexpressing a soluble form of RANKL (RANKL Tg) exhibited increased osteoclastic bone resorption. Injection of DPH into the subcutaneous tissue overlying calvaria of RANKL Tg mice suppressed the enhanced resorption in the calvaria. In co-cultures of mouse osteoblasts and bone marrow cells, DPH inhibited lipopolysaccharide (LPS)-induced osteoclast formation. DPH affected neither the mRNA expression of RANKL and osteoprotegerin nor the growth of mouse osteoblasts in culture. On the other hand, DPH inhibited the RANKL-induced formation of osteoclasts in cultures of mouse bone marrow-derived macrophages (BMMphis) and of human peripheral blood-derived CD14(+) cells. DPH concealed LPS-induced bone resorption in mouse calvarial organ cultures and inhibited the pit-forming activity of mouse osteoclasts cultured on dentine slices. DPH suppressed the RANKL-induced calcium oscillation and expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos in BMMphis. Moreover, DPH inhibited the RANKL-induced nuclear localization and auto-amplification of NFATc1 in mature osteoclasts. Both BMMphis and osteoclasts expressed mRNA of a T-type calcium channel, Cav3.2, a target of DPH. Blocking the expression of Cav3.2 by short hairpin RNAs significantly suppressed RANKL-induced osteoclast differentiation. These results suggest that DPH inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. The topical application of DPH may be a therapeutic treatment to prevent bone loss induced by local inflammation such as periodontitis.

Koide M, Kinugawa S, Ninomiya T, Mizoguchi T…
J. Bone Miner. Res. Aug 2009
PMID: 19292614

Phenytoin Stimulates Osteoblast Markers in Rat Cells

Abstract

Stimulatory effects of phenytoin on osteoblastic differentiation of fetal rat calvaria cells in culture.

Phenytoin (diphenylhydantoin, DPH), an anticonvulsant drug for epileptic patients, has several adverse effects, including calvarial thickening and coarsening of the facial features, which occur with chronic DPH therapy. While previous studies have demonstrated that DPH has an anabolic action on bone cells in vivo and in vitro, the basis of these effects is not fully understood. In this study, the effect of DPH on osteoblastic differentiation of fetal rat calvaria (RC) cells in culture was investigated by measuring bone nodule (BN) formation, cell growth, alkaline phosphatase (ALPase) activity, collagen synthesis, and expression of osteocalcin (OC) and osteopontin (OP) mRNAs. Continuous treatment of RC cells with DPH for 18 days dose-dependently increased the mineralized BN number by 1.2-1.7-fold at concentrations of 12.5-200 micromol/L DPH. Cell growth was not affected at the same concentrations of DPH. ALPase activity was stimulated by DPH (1.1-1.9-fold) dose-dependently and was maintained at higher levels in DPH-treated cells throughout the experimental period. DPH increased mineralized and unmineralized BN formations both in the presence and the absence of 10(-8) mol/L dexamethasone (Dex). Expression of OC and OP mRNAs was markedly augmented by DPH on days 12-24 and on days 12-18, respectively. While control mRNA levels of OC and OP increased with time, the increases in DPH-treated cells were greater than those of the controls and the stimulatory effects were dose-dependent. Type I collagen was also influenced by DPH; mRNA level was enhanced and the percentage of collagen synthesized was increased significantly, by 200 micromol/L DPH. When DPH was added in three different culture stages, days 1-6 (growth), days 7-12 (matrix development), and days 13-18 (mineralization), BN formation was influenced primarily on days 1-6 and secondarily on days 7-12, but not on days 13-18, suggesting that DPH increased BN formation by enhancing not only the proportion of osteoprogenitor cells in the early stage but also the proportion of functional osteoblasts in the middle stage within mixed-cell populations. Moreover, such increases were detected in conditions of both Dex(+) and Dex(-). These findings demonstrate that DPH stimulates osteoblast-associated markers such as BNs, ALPase, OC, OP, and type I collagen by continuously affecting the stages of growth and matrix development in RC cells, and suggests that the stimulatory effects by DPH may possibly be induced independent of those by Dex.

Ikedo D, Ohishi K, Yamauchi N, Kataoka M…
Bone Dec 1999
PMID: 10593409

Phenytoin Increases Bone Formation In Vitro and In Vivo in Men

Abstract

Phenytoin increases markers of osteogenesis for the human species in vitro and in vivo.

Phenytoin therapy is a well recognized cause of gingival hyperplasia, a condition characterized by increased gingival collagen synthesis, and may also cause acromegalic-like facial features. Based on these clinical findings suggestive of anabolic actions, we sought to test the hypothesis that phenytoin acts on normal bone cells to induce osteogenic effects. To test the direct actions of phenytoin on human bone cells, we measured the dose responses to phenytoin for [3H]thymidine incorporation, cell number, alkaline phosphatase specific activity, and collagen synthesis in human hip bone-derived cells. Phenytoin significantly and reproducibly increased [3H]thymidine incorporation, cell number, alkaline phosphatase specific activity, and collagen synthesis in a biphasic manner with optimal stimulatory doses between 5-10 mumol/L. Thus, micromolar concentrations of phenytoin can act directly on human bone cells to stimulate osteoblast proliferation and differentiation. We next sought to test the hypothesis that phenytoin stimulates bone formation in humans in vivo. Accordingly, three serum biochemical markers of bone formation, i.e. osteocalcin, skeletal alkaline phosphatase, and procollagen C-terminal extension peptide, were measured in 39 male epileptic patients, 20-60 yr of age, with an average duration of phenytoin therapy of 10.5 +/- 1.62 yr (mean +/- SEM). In this group of patients, the mean serum phenytoin level was 9.56 +/- 0.90 mg/L (mean +/- SEM; equivalent to 34.9 +/- 3.3 mumol/L). Thirty apparently healthy male subjects of similar age and taking no medication were included as controls. Serum calcium, 25-hydroxyvitamin D3, and PTH levels in the phenytoin-treated patients were not significantly different from those in the age-matched controls and were within the clinical laboratory normal range of our hospitals, indicating that the patients did not develop hypocalcemia, vitamin D deficiency, or secondary hyperparathyroidism. Serum levels of osteocalcin, skeletal alkaline phosphatase, and procollagen peptide in the phenytoin-treated patients were significantly increased compared to those in the age-matched subjects; in each case these biochemical markers were significantly correlated with the serum phenytoin level, but not with the dose or duration of phenytoin treatment. These findings are consistent with the interpretation that phenytoin increases the bone formation rate in humans in vivo.

Lau KH, Nakade O, Barr B, Taylor AK…
J. Clin. Endocrinol. Metab. Aug 1995
PMID: 7629228

Phenytoin Increases Bone Growth via TGF-Beta In Vitro

Abstract

Osteogenic actions of phenytoin in human bone cells are mediated in part by TGF-beta 1.

We have recently demonstrated that phenytoin, a widely used therapeutic agent for seizure disorders, has osteogenic effects in rats and in humans in vivo, and in human bone cells in vitro. The goal of the present study was to determine the mechanism of the osteogenic action of phenytoin in normal human mandible-derived bone cells. Because many osteogenic agents increased bone cell proliferation through mediation by growth factors, we tested the hypothesis that the osteogenic effects of phenytoin involved the release of a growth factor by measuring the mRNA level of several bone cell growth factors and insulin-like growth factor (IGF) binding proteins with Northern blots using specific cDNA probes. Treatment with 5-50 microM phenytoin reproducibly and markedly increased (up to 6-fold, p < 0.001) the mRNA of transforming growth factor (TGF)-beta 1, but not that of other growth factors (i.e., IGF-II, platelet-derived growth factor-A [PDGF-A], PDGF-B, and TGF-beta 2) and IGF binding proteins (i.e., IGFBP-3, -4, and -5). The stimulation was dose dependent, with an optimal dose of 10-50 microM. Maximal increase was seen after 1 h of phenytoin treatment. The release of biologically active TGF-beta activity in conditioned media was measured with the mink lung cell proliferation inhibition assay. Twenty-four hours of phenytoin treatment significantly increased the production of biologically active TGF-beta (2-fold, p < 0.05) with the optimal dose between 5-50 microM. Comparisons between the in vitro osteogenic effects of phenytoin and those of TGF-beta 1 reveal that these two agents at their respective optimal doses had similar maximal stimulatory effects on [3H]thymidine incorporation, alkaline phosphatase (ALP)-specific activity, and type I alpha-2 collagen mRNA expression in human bone cells. The stimulatory effects of phenytoin on [3H]thymidine incorporation and ALP-specific activity were completely blocked by a neutralizing anti-TGF-beta antibody. In conclusion, these findings demonstrate for the first time that at least some of the osteogenic actions of phenytoin in human bone cells could be in part mediated by TGF-beta 1.

Nakade O, Baylink DJ, Lau KH
J. Bone Miner. Res. Dec 1996
PMID: 8970889

D-Pinitol Inhibits Osteoclasts in Rats

Abstract

D-pinitol inhibits RANKL-induced osteoclastogenesis.

Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. D-pinitol, a 3-methoxy analogue of D-chiroinositol, was identified as an active principle in soy foods and legumes. Here we found that D-pinitol markedly inhibited the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation from bone marrow stromal cells and RAW264.7 macrophage cells. In addition, D-pinitol also reduced RANKL-induced p38 and JNK phosphorylation. Furthermore, RANKL-mediated increase of IKK, IκBα, and p65 phosphorylation and NF-κB-luciferase activity was inhibited by D-pinitol. However, D-pinitol did not affect the proliferation and differentiation of osteoblasts. In addition, D-pinitol also prevented the bone loss induced by ovariectomy in vivo. Our data suggest that D-pinitol inhibits osteoclastogenesis from bone marrow stromal cells and macrophage cells via attenuated RANKL-induced p38, JNK, and NF-κB activation, which in turn protect bone loss from ovariectomy.

Liu SC, Chuang SM, Tang CH
Int. Immunopharmacol. Mar 2012
PMID: 22269833

D-Chiro-Inositol Inhibits Osteoclasts In Vitro

Abstract

D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1.

Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation.
To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1).
We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1.
We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.

Yu J, Choi S, Park ES, Shin B…
J. Clin. Immunol. Dec 2012
PMID: 22711011

IP-6 Inhibits Osteoclastogenesis and Increases Resorption of Mature Osteoclasts In Vitro

Abstract

Inositol hexakisphosphate inhibits osteoclastogenesis on RAW 264.7 cells and human primary osteoclasts.

Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown. The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts.
Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis.

Arriero Mdel M, Ramis JM, Perelló J, Monjo M
PLoS ONE 2012
PMID: 22905230 | Free Full Text