Tag Archives: in vitro

Berberine Prevents Bone Loss in Rats

Abstract

The effect of kampo formulae on bone resorption in vitro and in vivo. II. Detailed study of berberine.

We previously isolated berberine from aqueous extracts of tsu-kan-gan, a Kampo formula used for the treatment of osteoporosis. Berberine caused an inhibitory effect on parathyroid hormone (PTH)-stimulated bone resorption in neonatal mouse bone. In this report we describe the inhibitory effect of berberine on the formation of osteoclast-like multinucleated cells (OCLs) in the co-culture of mouse osteoblastic cells and bone marrow cells in the presence of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], PTH and interleukin-1alpha (IL-1alpha). Berberine dose-dependently inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive OCLs induced by 1alpha25(OH)2D3, PTH and IL-1alpha. We prepared OCLs in the co-culture of osteoblastic cells and bone marrow cells. The effect of berberine on pit formation by OCLs was examined using dentin slices. As OCLs are terminally differentiated multinucleated cells, the survival of OCLs affects the bone-resorbing activity of OCLs. This prompted us to count the number of TRAP-positive OCLs on the slices. Berberine dose-dependently inhibited pit formation and caused a decrease in the number of TRAP-positive OCLs. Calcitonin (CT) inhibited pit formation without affecting the number of OCLs. Berberine accelerated the cell death in OCLs cultivated on a culture plate, but CT did not affect the cell death of OCLs. This suggests that the decrease in the number of OCLs on dentin slices may be due to apoptotic cell death in OCLs. In fact, Hoechst 33258 staining revealed that the treatment of OCLs with berberine resulted in condensed nuclei and a decrease in cell size. Oral administration of the berberine (30 and 50 mg/kg/d) to ovariectomized rats prevented a decrease in bone mineral density (BMD) of the lumbar vertebra without affecting the weight of the uterus and plasma concentration of estradiol. These results suggested that berberine prevented a decrease in BMD in vivo by inhibiting osteoclastic bone resorption.

Li H, Miyahara T, Tezuka Y, Namba T…
Biol. Pharm. Bull. Apr 1999
PMID: 10328560

Berberine Promotes Osteoblasts in Mouse Cells

Abstract

Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK.

Berberine (BBR) has been implicated in bone biology. Although BBR reduces osteoporosis by enhancing BMD and inhibiting osteoclast activity, the effects of BBR on osteoblasts during the process of osteogenesis have not been thoroughly studied. In osteoblastic cells, BBR enhanced the expression of osteogenic marker genes including osteopontin and osteocalcin and promoted the transcriptional activity of the key osteogenic transcription factor Runx2. In osteoblasts, BBR increased the binding of Runx2 to the promoter region of osteopontin. The recruitment of co-factors such as p300 and HDAC1 to the promoter regions of osteopontin and osteocalcin was regulated by BBR, resulting in an enhancement in the expression of those genes. Furthermore, BBR activated p38 mitogen-activated protein kinase (MAPK) and increased cyclooxygenase 2 (COX2) expression, which are key factors in osteoblast differentiation. Consistently, a p38 MAPK-specific inhibitor attenuated the effect of BBR on osteogenesis, whereas p38 MAPK overexpression augmented BBR-induced osteogenic gene expression. Moreover, BBR stimulated bone area formation in calvarial organ culture. Taken together, these findings indicate that BBR promotes osteoblast differentiation through activation of Runx2 by p38 MAPK. Therefore, BBR may be a potential therapeutic agent to treat bone-related disorders including osteoporosis.

Lee HW, Suh JH, Kim HN, Kim AY…
J. Bone Miner. Res. Aug 2008
PMID: 18410224

Berberine Inhibits Osteoclasts in Mouse Cells

Abstract

Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways.

Berberine, an isoquinoline alkaloid isolated from several medicinal plants, has been reported to possess anti-bacterial, anti-inflammatory and antitumor properties. Although berberine also inhibits osteoclastogenesis and bone resorption, the molecular machinery for its inhibitory effects remains unknown. This study focused on the suppressive effects of berberine on receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis and survival. Berberine inhibited RANKL-mediated osteoclast formation and survival while having no cytotoxic effects on bone marrow macrophages or osteoblastic cells. Berberine attenuated RANKL-induced activation of NF-kappaB through inhibiting phosphorylation at the activation loop of IkappaBalpha kinase beta, phosphorylation and degradation of IkappaBalpha, and NF-kappaB p65 nuclear translocation. RANKL-induced Akt phosphorylation was strongly inhibited by berberine; however, neither monocyte/macrophage-colony stimulating factor (M-CSF)-induced nor insulin-induced Akt activation was inhibited by the drug. Under M-CSF- and RANKL-deprived condition, berberine increased the active form of caspase-3 in osteoclasts. By contrast, berberine did not potentiate the activation of caspase-3 in M-CSF-deprived bone marrow macrophages. These findings indicate that berberine inhibits osteoclast formation and survival through suppression of NF-kappaB and Akt activation and that both pathways in the osteoclast lineage are highly sensitive to berberine treatment.

Hu JP, Nishishita K, Sakai E, Yoshida H…
Eur. J. Pharmacol. Feb 2008
PMID: 18083161

Vitamin C Increases Collagen Synthesis of Osteoblasts

Abstract

Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.

Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is the major function of OBs and is markedly up-regulated upon ascorbic acid (AA) stimulation, significantly more so than in fibroblast cells. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone protein secretion and deposition. Protein trafficking along the exocytic and endocytic pathways is aided by many molecules, with Rab GTPases being master regulators of vesicle targeting. In this study, we used microarray analysis to identify the Rab GTPases that are up-regulated during a 5-day AA differentiation of OBs, namely Rab1, Rab3d, and Rab27b. Further, we investigated the role of identified Rabs in regulating the trafficking of collagen from the site of synthesis in the ER to the Golgi and ultimately to the plasma membrane utilizing Rab dominant negative (DN) expression. We also observed that experimental halting of biosynthetic trafficking by these mutant Rabs initiated proteasome-mediated degradation of procollagen and ceased global protein translation. Acute expression of Rab1 and Rab3d DN constructs partially alleviated this negative feedback mechanism and resulted in impaired ER to Golgi trafficking of procollagen. Similar expression of Rab27b DN constructs resulted in dispersed collagen vesicles which may represent failed secretory vesicles sequestered in the cytosol. A significant and strong reduction in extracellular collagen levels was also observed implicating the functional importance of Rab1, Rab3d and Rab27b in these major collagen-producing cells.

Nabavi N, Pustylnik S, Harrison RE
PLoS ONE 2012
PMID: 23050002 | Free Full Text

Lipoic Acid Inhibits Resorption from Adrenaline

Abstract

β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species.

Sympathetic signaling regulates bone resorption through receptor activator of nuclear factor-κB ligand (RANKL) expression via the β-adrenergic receptor (β-AR) on osteoblasts. Reactive oxygen species (ROS) are known as one type of osteoclast regulatory molecule. Here we show that an antioxidant, α-lipoic acid (α-LA), treatment prevent the β-adrenergic signaling-induced bone loss by suppressing osteoclastogenesis, and sympathetic signaling directly regulates osteoclastogenesis through β2-AR expressed on osteoclasts via intracellular ROS generation. In an in vitro study, the β-AR agonist isoprenaline increased intracellular ROS generation in osteoclasts prepared from bone marrow macrophages (BBMs) and RAW 264.7 cells. Isoprenaline enhanced osteoclastogenesis through β2-AR expressed on BMMs and RAW 264.7 cells. The antioxidant α-LA inhibited isoprenaline-enhanced osteoclastogenesis. Isoprenaline increased the expression of osteoclast-related genes such as nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1, tartrate-resistant acid phosphatase, and cathepsin K on osteoclasts. α-LA also inhibited isoprenaline-induced increases of these gene expressions. These in vitro results led to the hypothesis that β-adrenergic signaling directly stimulates osteoclastogenesis via ROS generation. In an in vivo study, isoprenaline treatment alone caused oxidative damage in local bone and reduced bone mass because of an increase in bone resorption, and, in α-LA-treated mice, isoprenaline did not increase tibial osteoclast number even though the RANKL-to-osteoprotegerin ratio increased. These in vitro and in vivo results indicate that β-adrenergic signaling, at least in part, directly stimulates osteoclastogenesis through β2-AR on osteoclasts via ROS generation.

Kondo H, Takeuchi S, Togari A
Am. J. Physiol. Endocrinol. Metab. Mar 2013
PMID: 23169789

Lipoic Acid Inhibits Osteoclasts and Bone Loss from Inflammation in Mouse Cells

Abstract

alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis.

alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a marginal effect on osteoclastogenesis from bone marrow macrophages induced by receptor activator of NF-kappaB ligand (RANKL). LA inhibited both the sustained up-regulation of RANKL expression and the production of PGE2 induced by IL-1 in osteoblasts. In addition, treatment with either prostaglandin E2 (PGE2) or RANKL rescued IL-1-induced osteoclast formation inhibited by LA or NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, in cocultures. LA blocked IL-1-induced PGE2 production even in the presence of arachidonic acid, without affecting the expression of COX-2 and membrane-bound PGE2 synthase. Dihydrolipoic acid (the reduced form of LA), but not LA, attenuated recombinant COX-2 activity in vitro. LA also inhibited osteoclast formation and bone loss induced by IL-1 and LPS in mice. Our results suggest that the reduced form of LA inhibits COX-2 activity, PGE2 production, and sustained RANKL expression, thereby inhibiting osteoclast formation and bone loss in inflammatory conditions.

Ha H, Lee JH, Kim HN, Kim HM…
J. Immunol. Jan 2006
PMID: 16365401 | Free Full Text

Lipoic Acid Suppresses Osteoclasts

Abstract

Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells.

Growing evidence has shown a biochemical link between increased oxidative stress and reduced bone density. Although alpha-lipoic acid (alpha-LA) has been shown to act as a thiol antioxidant, its effect on bone cells has not been determined. Using proteomic analysis, we identified six differentially expressed proteins in the conditioned media of alpha-LA-treated human bone marrow stromal cell line (HS-5). One of these proteins, receptor activator of nuclear factor kappaB ligand (RANKL), was significantly up-regulated, as confirmed by immunoblotting with anti-RANKL antibody. ELISA showed that alpha-LA stimulated RANKL production in cellular extracts (membranous RANKL) about 5-fold and in conditioned medium (soluble RANKL) about 23-fold, but had no effect on osteoprotegerin (OPG) secretion. Despite increasing the RANKL/OPG ratio, alpha-LA showed a dose-dependent suppression of osteoclastogenesis, both in a coculture system of mouse bone marrow cells and osteoblasts and in a mouse bone marrow cell culture system, and reduced bone resorption in a dose-dependent manner. In addition, alpha-LA-induced soluble RANKL was not inhibited by matrix metalloprotease inhibitors, indicating that soluble RANKL is produced by alpha-LA without any posttranslational processing. In contrast, alpha-LA had no significant effect on the proliferation and differentiation of HS-5 cells. These results suggest that alpha-LA suppresses osteoclastogenesis by directly inhibiting RANKL-RANK mediated signals, not by mediating cellular RANKL production. In addition, our findings indicate that alpha-LA-induced soluble RANKL is not produced by shedding of membranous RANKL.

Koh JM, Lee YS, Byun CH, Chang EJ…
J. Endocrinol. Jun 2005
PMID: 15930166 | Free Full Text

Geranium Decreases Resorption and Number of Osteoclasts In Vitro

Abstract

Effects of geraniin on osteoclastic bone resorption and matrix metalloproteinase-9 expression.

In our previous studies, geraniin was reported to have a preventive effect in the rat model of tretinoin-induced osteoporosis. However, whether geraniin exhibits an inhibitory effect on bone resorption or on MMP-9 expression is not yet known. We present here our novel findings from in vitro experiments that geraniin (a) decreases the number of mature osteoclasts and pre-osteoclast in cultures, (b) reduces the osteoclastic fusion index, and (c) inhibits the resorption areas and resorption pits. We also report that geraniin suppresses the mRNA and protein expression levels of MMP-9. These results demonstrate that geraniin has an inhibitory effect on the bone-absorption ability of osteoclasts in vitro, and the mechanisms may be closely associated with the downregulation of mRNA and protein expression of MMP-9.

He B, Hu M, Li SD, Yang XT…
Bioorg. Med. Chem. Lett. Feb 2013
PMID: 23290455

Pineapple Guava Leaf Extract Enhances Bone Mineralization

Abstract

Bone mineralization enhancing activity of a methoxyellagic acid glucoside from a Feijoa sellowiana leaf extract.

The capability of an aqueous methanol extract obtained from the leaves of Feijoa sellowiana Berg. on possible prevention and treatment of osteoporosis has been examined by evaluating its stimulating effect on the two human osteoblastic cell lines HOS58 and SaOS-2. The extract was found to increase significantly the mineralization of cultivated human bone cell, whereby a clear increment (15.3 +/- 2.7%) in von Kossa positive area was determined when administering 25 microg/ml leaf extract. A phytochemical investigation of the extract has demonstrated the high phenolic content and led to the isolation and identification of twenty three of them, among which the new 3-methoxyellagic acid 4-O-beta-glucopyranoside was fully identified. All structures were elucidated on the basis of conventional analytical methods and confirmed by FTMS, 1D- and 2D-NMR data. The new compound was found to cause a significant increase of mineralized area at 20 microg/mL, while at lower concentrations the effect was not significant. However, an increase of the number of mineralized spots (nodules) at all tested concentrations of the compound was observed.

Ayoub NA, Hussein SA, Hashim AN, Hegazi NM…
Pharmazie Feb 2009
PMID: 19320288

Ellagic Acid and Walnut Have “Remarkable Osteoblastic Activity”

Abstract

Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483.

Epidemiological studies suggest that the incidence of CVD and postmenopausal osteoporosis is low in the Mediterranean area, where herbs and nuts, among others, play an important role in nutrition. In the present study, we sought a role of walnuts (Juglans regia L.) in endothelial and bone-cell function. As the endothelial cell expression of adhesion molecules has been recognised as an early step in inflammation and atherogenesis, we examined the effect of walnut methanolic extract and ellagic acid, one of its major polyphenolic components (as shown by HPLC analysis), on the expression of vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1 in human aortic endothelial cells. After incubating the cells with TNF-alpha (1 ng/ml) in the absence and in the presence of walnut extract (10-200 microg/ml) or ellagic acid (10- 7-10- 5 m), the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. We further evaluated the effect of walnut extract (10-50 microg/ml), in comparison with ellagic acid (10- 9-10- 6m), on nodule formation in the osteoblastic cell line KS483. Walnut extract and ellagic acid decreased significantly the TNF-alpha-induced endothelial expression of both VCAM-1 and ICAM-1 (P < 0.01; P < 0.001). Both walnut extract (at 10-25 microg/ml) and ellagic acid (at 10- 9-10- 8 m) induced nodule formation in KS483 osteoblasts. The present results suggest that the walnut extract has a high anti-atherogenic potential and a remarkable osteoblastic activity, an effect mediated, at least in part, by its major component ellagic acid. Such findings implicate the beneficial effect of a walnut-enriched diet on cardioprotection and bone loss.

Papoutsi Z, Kassi E, Chinou I, Halabalaki M…
Br. J. Nutr. Apr 2008
PMID: 17916277