Tag Archives: in vitro

Oligogalacturonic Acid Inhibits Resorption In Vitro

Abstract

Oligogalacturonic acid inhibit bone resorption and collagen degradation through its interaction with type I collagen.

In this study, we showed that oligogalacturonic acid (OGA) purified from flax pectin inhibit in vitro osteoclastic bone resorption in a dose-dependent manner. The OGA inhibitory effect was neither linked to an effect on osteoclast apoptosis, nor to an inhibition of cathepsin K activity. By means of an in vitro collagen degradation assay we demonstrated that OGA prevented triple-helical type I collagen cleavage by cathepsin K in a dose and chain length dependent manner. This inhibition was not restricted to cathepsin K, since collagenolytic activity of other lysosomal cysteine proteases, such as cathepsin B and cathepsin L, as well as matrixmetalloproteinases such as MMP-9 were also inhibited. Interestingly, using non-collagen substrates we demonstrated that OGA does not inhibit the proteolytic activity of cathepsin B and L, suggesting that OGA inhibits collagen degradation without affecting the lysosomal cysteine enzyme proteolytic activity. Finally, preliminary study using surface plasmon resonance (SPR) showed that OGA binds to type I collagen but not to albumin, consistent with a specific effect on collagen. These results suggest that the observed inhibition of collagen degradation by OGA may be due to its ability to bind to the collagen molecule. By masking the collagen surface, OGA may render the collagen cleavage site less accessible to enzymes and thus prevent its enzymatic degradation.

Lion JM, Mentaverri R, Rossard S, Jullian N…
Biochem. Pharmacol. Dec 2009
PMID: 19647720

Curcumin Decreases Proliferation and Mineralization of Human Osteoblasts In Vitro

Abstract

Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: implications of nitric oxide.

Curcumin (diferuloylmethane) is found in the rhizomes of the turmeric plant (Curcuma longa L.) and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO) is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS), and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s) by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63), we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, Calderon-Garcia JF…
Int J Mol Sci 2012
PMID: 23443113 | Free Full Text

Curcumin Helps Kill Osteoblasts In Vitro

Abstract

Dosage effects of curcumin on cell death types in a human osteoblast cell line.

Curcumin, the yellow pigment of Curcuma longa, is known to have antioxidant and anti-inflammatory properties, as well as their ability to either induce or prevent cell apoptosis. However, the precise molecular mechanisms of these effects are unknown. Here, we demonstrate that curcumin can induce apoptotic changes, including JNK activation, caspase-3 activation, and cleavage of PARP and PAK2, at treatment concentrations lower than 25 microM in human osteoblast cells. In contrast, treatment with 50-200 microM of curcumin does not induce apoptosis, but rather triggers necrotic cell death in human osteoblasts. Using the cell permeable dye 2′,7′-dichlorofluorescin diacetate (DCF-DA) as an indicator of reactive oxygen species (ROS) generation, we found that while treatment with 12.5-25 microM curcumin directly increased intracellular oxidative stress, 50-200 microM curcumin had far less effect. Pretreatment of cells with N-acetyl cysteine or alpha-tocopherol, two well known ROS scavengers, attenuated the intracellular ROS levels increases and converted the apoptosis to necrosis induced by 12.5-25 microM curcumin. Moreover, we observed a dose-dependent decrease in intracellular ATP levels after treatment of osteoblast cells with curcumin and pretreatment of cells with antimycin or 2-deoxyglucose to cause ATP depletion significantly converted 12.5-25 microM curcumin-induced apoptosis to necrosis, indicating that ATP (a known mediator of apoptotic versus necrotic death) is most likely involved in the switching mechanism. Overall, our results signify that curcumin dosage treatment determines the possible effect on ROS generation, intracellular ATP levels, and cell apoptosis or necrosis in osteoblast cells.

Chan WH, Wu HY, Chang WH
Food Chem. Toxicol. Aug 2006
PMID: 16624471

Curcumin, Japanese Apricot, and Others, Effects on Osteoclasts in Mice In Vitro

Abstract

Screening of Korean medicinal plants for possible osteoclastogenesis effects in vitro.

Bone undergoes continuous remodeling through bone formation and resorption, and maintaining the balance for skeletal rigidity. Bone resorption and loss are generally attributed to osteoclasts. Differentiation of osteoclasts is regulated by receptor activator of nuclear factor NF-kB ligand (RANKL), a member of tumor necrosis factor family. When the balance is disturbed, pathological bone abnormality ensues. Through the screening of traditional Korean medicinal plants, the effective molecules for inhibition and stimulation of RANKL-induced osteoclast differentiation in mouse bone marrow macrophages were identified. Among 222 methanol extracts, of medicinal plants, 10 samples exhibited ability to induce osteoclast differentiation. These include Dryobalanops aromatica, Euphoria longana, Lithospermum erythrorhizon, Prunus mume, Prunus nakaii, and Polygonatum odoratum. In contrast, Ailanthus altissima, Curcuma longa, Solanum nigrum, Taraxacum platycarpa, Trichosanthes kirilowii, and Daphne genkwa showed inhibitory effects in RANKL-induced osteoclast differentiation.

Youn YN, Lim E, Lee N, Kim YS…
Genes Nutr Feb 2008
PMID: 18850234 | Free Full Text

Curcumin Inhibits Rat Osteoblast Cells In Vitro

Abstract

Curcumin inhibits the proliferation and mineralization of cultured osteoblasts.

The effects of curcumin, which is an important constituent of rhizomes of the plant Curcuma longa Linn, on the metabolism of osteoblasts were examined in cultures of rat calvarial osteoblastic cells (ROB cells). The proliferation of cells was markedly inhibited upon exposure of cells to curcumin at 5×10(-6) to 1×10(-5) M. Curcumin at 1×10(-5) M did not induce apoptosis in ROB cells but arrested cells at the G1 phase of the cell cycle. In addition, curcumin stimulated the expression of mRNA for p21(WAF1/CIP1), which inhibits the activity of cyclin-dependent kinases, and inhibited the phosphorylation of histone H1. Furthermore, curcumin reduced the rate of deposition of calcium and the formation of mineralized nodules. Our results indicate that curcumin might inhibit the proliferation and mineralization of osteoblastic cells through the expression of p21(WAF1/CIP1).

Notoya M, Nishimura H, Woo JT, Nagai K…
Eur. J. Pharmacol. Mar 2006
PMID: 16476424

Curcumin Inhibits Osteoclasts in Mouse Cells

Abstract

Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis.

Numerous studies have indicated that inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with cancers and other diseases. Gene deletion studies have shown that receptor activator of NF-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. How RANKL mediates osteoclastogenesis is not fully understood, but an agent that suppresses RANKL signaling has potential to inhibit osteoclastogenesis. In this report, we examine the ability of curcumin (diferuloylmethane), a pigment derived from turmeric, to suppress RANKL signaling and osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and preexposure of the cells to curcumin completely suppressed RANKL-induced NF-kappaB activation. Curcumin inhibited the pathway leading from activation of IkappaBalpha kinase and IkappaBalpha phosphorylation to IkappaBalpha degradation. RANKL induced osteoclastogenesis in these monocytic cells, and curcumin inhibited both RANKL- and TNF-induced osteoclastogenesis and pit formation. Curcumin suppressed osteoclastogenesis maximally when added together with RANKL and minimally when it was added 2 days after RANKL. Whether curcumin inhibits RANKL-induced osteoclastogenesis through suppression of NF-kappaB was also confirmed independently, as RANKL failed to activate NF-kappaB in cells stably transfected with a dominant-negative form of IkappaBalpha and concurrently failed to induce osteoclastogenesis. Thus overall these results indicate that RANKL induces osteoclastogenesis through the activation of NF-kappaB, and treatment with curcumin inhibits both the NF-kappaB activation and osteoclastogenesis induced by RANKL.

Bharti AC, Takada Y, Aggarwal BB
J. Immunol. May 2004
PMID: 15128775 | Free Full Text

Curcumin Helps Suppress TNF-alpha and MMP-13 In Vitro

Abstract

Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes.

Tumor necrosis factor alpha (TNF-alpha), a major proinflammatory cytokine, induces arthritic joint inflammation and resorption of cartilage by matrix metalloproteinase-13 (MMP-13). RNA for MMP-13 is increased in human arthritic femoral cartilage. Mechanisms of this induction were investigated by pretreating primary human osteoarthritic (OA) femoral head chondrocytes or chondrosarcoma cells with the potential inhibitors of TNF-alpha signal transduction and downstream target transcription factors followed by stimulation with TNF-alpha and analysis of MMP-13 RNA/protein. TNF-alpha rapidly activated phosphorylation of extracellular signal-regulated kinases (ERKs), p38, and c-jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinases in human chondrocytes. Inhibitors of ERK (U0126, PD98059, and ERK1/2 antisense phosphorothioate oligonucleotide), JNK (SB203580, SP600125, and curcumin), and p38 (SB203580 and SB202190) pathways down-regulated the TNF-stimulated expression of MMP-13. Inhibitors of the transcription factors AP-1 (nordihydroguaiaretic acid, NDGA) and NF-kappaB (curcumin, proteasome inhibitors, and Bay-11-7085) suppressed TNF-alpha-induced MMP-13 expression in primary chondrocytes and SW1353 cells. These results suggest that induction of the MMP-13 gene by TNF-alpha is mediated by ERK, p38, and JNK MAP kinases as well as AP-1 and NF-kappaB transcription factors. Blockade of TNF-alpha signaling and its target transcription factors by the approaches tested here may be beneficial for reducing cartilage breakdown by MMP-13 in arthritis.

Liacini A, Sylvester J, Li WQ, Huang W…
Exp. Cell Res. Aug 2003
PMID: 12878172

Onion Inhibits Osteoclasts In Vitro

Abstract

Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-kappaB pathways.

Onion powder has been reported to decrease the ovariectomy-induced bone resorption of rats. However, the molecular mechanism of onion powder on the bone cells has not been reported. Here, we report that water solution of onion crude powder decreases the osteoclastogenesis from co-cultures of bone marrow stromal cells and macrophage cells. Additionally, water solution of onion crude powder inhibits the RANKL-induced ERK, p38 and NF-kappaB activation in macrophages. In summary, our data showed that onion powder may benefit bone through an anti-resorption effect on the osteoclasts.
A nutritional approach is important for both prevention and treatment of osteoporosis. Onion has been reported to decrease the ovariectomy-induced bone resorption. However, the functional effects of onion on the cultured osteoclasts and osteoblasts remain largely unknown. Here, we found that water solution of onion crude powder markedly inhibited the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis through ERK, p38 and NF-kappaB pathways. Other studies were also designed to investigate the potential signaling pathways involved in onion-induced decrease in osteoclastogenesis.
The osteoclastogenesis was examined using the TRAP staining method. The MAPKs and NF-kappaB pathways were measured using Western blot analysis. A transfection protocol was used to examine NF-kappaB activity.
Water solution of onion crude powder inhibited the RANKL plus M-CSF-induced osteoclastic differentiation from either bone marrow stromal cells or from RAW264.7 macrophage cells. Treatment of RAW264.7 macrophages with RANKL could induce the activation of ERK, p38 and NF-kappaB that was inhibited by water solution of onion crude powder. On the other hand, it did not affect the cell proliferation and differentiation of human cultured osteoblasts.
Our data suggest that water solution of onion crude powder inhibits osteoclastogenesis from co-cultures of bone marrow stromal cells and macrophage cells via attenuation of RANKL-induced ERK, p38 and NF-kappaB activation.

Tang CH, Huang TH, Chang CS, Fu WM…
Osteoporos Int Jan 2009
PMID: 18506384

Omega-3 Inhibits Osteoclasts In Vitro

Abstract

The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis.

Arachidonic fatty acid (AA) induces adipogenesis in human mesenchymal stem cells cultures, and high concentrations inhibit osteoblastogenesis; whereas eicosapentaenoic and docosahexaenoic fatty acids do not induce adipogenesis and do not inhibit osteoblastogenesis. In mesenchymal stem cells, omega-6 arachidonic polyunsaturated fatty acid promotes the differentiation of adipocytes and inhibits the osteoblast differentiation. While omega-3 fatty acids do not affect the adipogenic differentiation their effects on osteoblastogenesis are less relevant. An increased ratio of omega-3/omega-6 fatty acid consumption can prevent bone mass loss.
Consumption of omega-3 may protect against osteoporosis since they may inhibit osteoclastogenesis. However, with aging, MSC in bone marrow are increasingly differentiated into adipocytes, reducing the number of osteoblasts. Products derived from omega-6 and omega-3 metabolism may affect MSC differentiation into osteoblasts and adipocytes.
Human MSC have been differentiated into osteoblasts or adipocytes in the presence of omega-6 (AA), or omega-3 (DHA and EPA), and osteoblastic and adipocytic markers have been analyzed.
AA decreases the expression of osteogenic markers and the osteoprotegerin/receptor activator of nuclear factor kappa β ligand gene expression ratio (opg/rankl). High concentrations of AA inhibit the mineralization and cause the appearance of adipocytes in MSC differentiating into osteoblasts to a higher extent than DHA or EPA. In MSC differentiated into adipocytes, AA increases adipogenesis, while DHA and EPA do not affect it. AA caused the appearance of adipocytes in undifferentiated MSC. The lipoxygenase gene (alox15b) is induced by omega-3 in MSC induced to osteoblasts, and by omega-6 in MSC induced to adipocytes.
An increase in the intake of omega-3 respect to omega-6 may provide protection against the loss of bone mass, since omega-6 favors the osteoclastic activity by diminishing the opg/rankl gene expression in osteoblasts and promotes MSC differentiation into adipocytes, thus diminishing the production of osteoblasts.

Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM
Osteoporos Int May 2013
PMID: 23104199

EPA + DHA: Possible Mechanism

Abstract

PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA) influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R) are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK). From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA) and docosahexaenoic fatty acids (DHA) caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34)) in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA) and C (PKC), reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC), we detected conformational responses to EPA similar to those caused by PTH(1-34). PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34) leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt) phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

Candelario J, Tavakoli H, Chachisvilis M
PLoS ONE 2012
PMID: 23300710 | Free Full Text


In human studies, it has been shown that consuming EPA improved bone quality in elderly female subjects [21]. Consumption of ω-3 fatty acids was also associated with reduced incidence and severity of inflammatory bone/joint diseases in humans [22]. There is evidence of the potential of EPA to counteract bone loss associated with spaceflight; higher consumption of fish (ω-3) was associated with reduced loss of bone mineral density (BMD) after flight [23]. BMD of the total body showed a significant negative correlation with serum concentrations of oleic acids and monounsaturated fatty acids and significant correlations with DHA and ω-3 fatty acids [24]. A higher ratio of ω-6 to ω-3 fatty acids is associated with lower BMD at the hip in both sexes suggesting the relative amounts of dietary PUFA may play a vital role in preserving skeletal integrity in older age [25].