Tag Archives: human

Berberine + D3 + K1 + Hop Rho Iso-α-Acids Improve Bone in Postmenopausal Women

Abstract

Hop rho iso-alpha acids, berberine, vitamin D3 and vitamin K1 favorably impact biomarkers of bone turnover in postmenopausal women in a 14-week trial.

Osteoporosis is a major health issue facing postmenopausal women. Increased production of pro-inflammatory cytokines resulting from declining estrogen leads to increased bone resorption. Nutrition can have a positive impact on osteoporosis prevention and amelioration. The objective of this study was to investigate the impact of targeted phytochemicals and nutrients essential for bone health on bone turnover markers in healthy postmenopausal women. In this 14-week, single-blinded, 2-arm placebo-controlled pilot study, all women were instructed to consume a modified Mediterranean-style low-glycemic-load diet and to engage in limited aerobic exercise; 17 randomized to the placebo and 16 to the treatment arm (receiving 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D(3) and 500 microg vitamin K(1), twice daily). Thirty-two women completed the study. Baseline nutrient intake did not differ between arms. At 14 weeks, the treatment arm exhibited an estimated 31% mean reduction (P = 0.02) in serum osteocalcin (a marker of bone turnover), whereas the placebo arm exhibited a 19% increase (P = 0.03) compared to baseline. Serum 25-hydroxyvitamin D (25(OH)D) increased by 13% (P = 0.24) in the treatment arm and decreased by 25% (P < 0.01) in the placebo arm. The between-arm differences for OC and 25(OH)D were statistically significant. Serum IGF-I was increased in both arms, but the increase was more significant in the treatment arm at 14 weeks (P < 0.01). Treatment with hop rho iso-alpha acids, berberine sulfate trihydrate, vitamin D(3) and vitamin K(1) produced a more favorable bone biomarker profile that supports a healthy bone metabolism.

Holick MF, Lamb JJ, Lerman RH, Konda VR…
J. Bone Miner. Metab. May 2010
PMID: 20024591

Vitamin C Supplements Associated With Bone Density in Postmenopausal Women

Abstract

Vitamin C supplement use and bone mineral density in postmenopausal women.

Vitamin C is known to stimulate procollagen, enhance collagen synthesis, and stimulate alkaline phosphatase activity, a marker for osteoblast formation. Studies of dietary vitamin C intake and the relation with bone mineral density (BMD) have been conflicting, probably because of the well-known limitations of dietary nutrient assessment questionnaires. The purpose of this study was to evaluate the independent relation of daily vitamin C supplement use with BMD in a population-based sample of postmenopausal women. Subjects were 994 women from a community-based cohort of whom 277 women were regular vitamin C supplement users. Vitamin C supplement use was validated. Daily vitamin C supplement intake ranged from 100 to 5,000 mg; the mean daily dose was 745 mg. Average duration of use was 12.4 years; 85% had taken vitamin C supplements for more than 3 years. BMD levels were measured at the ultradistal and midshaft radii, hip, and lumbar spine. After adjusting for age, body mass index (BMI), and total calcium intake, vitamin C users had BMD levels approximately 3% higher at the midshaft radius, femoral neck, and total hip (p < 0.05). In a fully adjusted model, significant differences remained at the femoral neck (p < 0.02) and marginal significance was observed at the total hip (p < 0.06). Women taking both estrogen and vitamin C had significantly higher BMD levels at all sites. Among current estrogen users, those also taking vitamin C had higher BMD levels at all sites, with marginal significance achieved at the ultradistal radius (p < 0.07), femoral neck (p < 0.07), and total hip (p < 0.09). Women who took vitamin C plus calcium and estrogen had the highest BMD at the femoral neck (p = 0.001), total hip (p = 0.05), ultradistal radius (p = 0.02), and lumbar spine. Vitamin C supplement use appears to have a beneficial effect on levels of BMD, especially among postmenopausal women using concurrent estrogen therapy and calcium supplements.

Morton DJ, Barrett-Connor EL, Schneider DL
J. Bone Miner. Res. Jan 2001
PMID: 11149477

Antioxidants No Benefit in Population Study, Except Vitamin C with HRT

Abstract

Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative.

Antioxidant defenses are one possible mechanism for decreasing oxidative damage and its potentially negative effects on age-related bone mass.
This study cross-sectionally examined whether higher dietary intakes, total intakes, and serum concentrations of antioxidants may be associated with higher bone mineral density (BMD).
Total hip (and subregions), spine, and total-body BMDs were measured in 11,068 women aged 50-79 y enrolled in the Women’s Health Initiative Observational Study and Clinical Trial at 3 clinics. Antioxidant intakes from diet (vitamin A, retinol, beta-carotene, vitamin C, vitamin E, and selenium) were estimated by using a self-reported food-frequency questionnaire. Antioxidants from supplements were estimated with an interviewer-administered questionnaire. A random subset (n = 379) had serum concentrations of retinol, carotenoids, and tocopherols measured.
After adjustment for important BMD-related covariates, increasing intakes of antioxidants were not independently associated with BMD. A significant interaction effect was observed between intake of total vitamin C (lower three-fourths compared with highest one-fourth) and use of hormone therapy (HT) (P < 0.01). The beneficial effect of current HT use on femoral neck BMD appeared to be greater in women with higher concentrations of total vitamin C. This interaction was also significant for total-body (P < 0.045), spine (P = 0.03), and total-hip BMDs (P = 0.029).
Our results do not support independent associations between dietary intake, total intake, or serum concentrations of antioxidants and BMD in women participating in the Women’s Health Initiative. The extent to which HT use may interact with vitamin C intake and BMD warrants further exploration.

Wolf RL, Cauley JA, Pettinger M, Jackson R…
Am. J. Clin. Nutr. Sep 2005
PMID: 16155271 | Free Full Text

Vitamin C Effects Not Clear in Population Study

Abstract

Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults.

Ascorbic acid is an essential nutrient involved in collagen formation, and its deficiency is associated with abnormal bone development. To examine the relation of ascorbic acid to bone mineral density and the prevalence of self-reported fractures, the authors analyzed data collected from 13,080 adults enrolled in the Third National Health and Nutrition Examination Survey (NHANES III) during 1988-1994. Because they identified three-way interactions among smoking, history of estrogen use, and dietary and serum ascorbic acid in postmenopausal women, they analyzed these relations stratified by smoking and estrogen use. Dietary ascorbic acid intake was independently associated with bone mineral density among premenopausal women (p = 0.002). Among men, serum ascorbic acid was associated in a nonlinear fashion with bone mineral density (p < 0.05), and dietary ascorbic acid intake was associated in a nonlinear fashion with self-reported fracture (p = 0.05). Among postmenopausal women without a history of smoking or estrogen use, serum ascorbic acid was unexpectedly associated with lower bone mineral density (p = 0.01). However, among postmenopausal women with a history of smoking and estrogen use, a standard deviation increase in serum ascorbic acid was associated with a 49% decrease in fracture prevalence (p = 0.001). Dietary and serum ascorbic acid measures were associated inconsistently with bone mineral density and self-reported fracture among adult participants in NHANES III.

Simon JA, Hudes ES
Am. J. Epidemiol. Sep 2001
PMID: 11532784 | Free Full Text

Saturated Fat Associated with Lower Bone Density; Protein or Vitamin C No Help

Abstract

Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III.

Mounting evidence indicates that the amount and type of fat in the diet can have important effects on bone health. Most of this evidence is derived from animal studies. Of the few human studies that have been conducted, relatively small numbers of subjects and/or primarily female subjects were included. The present study assessed the relation of dietary fat to hip bone mineral density (BMD) in men and women using NHANES III data (n = 14,850). Multivariate models using SAS-callable SUDAAN were used to adjust for the sampling scheme. Models were adjusted for age, sex, weight, height, race, total energy and calcium intakes, smoking, and weight-bearing exercise. Data from women were further adjusted for use of hormone replacement therapy. Including dietary protein, vitamin C, and beta-carotene in the model did not influence the outcome. Analysis of covariance was used to generate mean BMD by quintile of total and saturated fat intake for 4 sex/age groups. Saturated fat intake was negatively associated with BMD at several hip sites. The greatest effects were seen among men < 50 y old (linear trend P = 0.004 for the femoral neck). For the femoral neck, adjusted mean BMD was 4.3% less among men with the highest compared with the lowest quintile of saturated fat intake (BMD, 95% CI: highest quintile: 0.922 g/cm2, 0.909-0.935; lowest quintile: 0.963 g/cm2, 95% CI: 0.950-0.976). These data indicate that BMD is negatively associated with saturated fat intake, and that men may be particularly vulnerable to these effects.

Corwin RL, Hartman TJ, Maczuga SA, Graubard BI
J. Nutr. Jan 2006
PMID: 16365076 | Free Full Text

Vitamins C + E, or Exercise, Prevent Bone Loss in Women

Abstract

Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study.

We determined the effect of antioxidants and resistance training on bone mineral density of postmenopausal women. After 6 months, we observed a significant decrease in the lumbar spine BMD of the placebo group while other groups remained stable. Antioxidants may offer protection against bone loss such as resistance training.
The purpose of this pilot study was to determine the effects of antioxidant supplements combined to resistance training on bone mineral density (BMD) in healthy elderly women.
Thirty-four postmenopausal women (66.1 +/- 3.3 years) were randomized in four groups (placebo, n = 7; antioxidants, n = 8; exercise and placebo, n = 11; and exercise and antioxidants, n = 8). The 6-month intervention consisted in antioxidant supplements (600 mg vitamin E and 1,000 mg vitamin C daily) or resistance exercise (3x/week). Femoral neck and lumbar spine BMD (DXA) and dietary intakes (3-day food record) were measured before and after the intervention. A repeated measure ANOVA and non-parametric Mann-Whitney U tests were used.
We observed a significant decrease in the placebo group for lumbar spine BMD (pre, 1.01 +/- 0.17 g/cm(2); post, 1.00 +/- 0.16 g/cm(2); P < 0.05 respectively) while it remained stable in all other groups. No changes were observed for femoral neck BMD.
Antioxidant vitamins may offer some protection against bone loss in the same extent as resistance exercise although combining both does not seem to produce additional effects. Our results suggest to further investigate the impact of antioxidant supplements on the prevention of osteoporosis.

Chuin A, Labonté M, Tessier D, Khalil A…
Osteoporos Int Jul 2009
PMID: 19020919

Vitamin C + β-Cryptoxanthin May Increase Bone Density in Post-Menopausal Women

Abstract

Dietary patterns of antioxidant vitamin and carotenoid intake associated with bone mineral density: findings from post-menopausal Japanese female subjects.

Recent studies show that antioxidants may reduce the risk of osteoporosis. This study showed the associations of bone mineral density with dietary patterns of antioxidant vitamins and carotenoids. The findings suggest the combination of vitamin C and β-cryptoxanthin intakes might provide benefit to bone health in post-menopausal Japanese female subjects.
Recent epidemiological studies show antioxidants may reduce the risk of osteoporosis, but little is known about the dietary patterns of antioxidant vitamin and carotenoid intakes and their relation with bone mineral density (BMD).
A total of 293 post-menopausal female subjects who had received health examinations in the town of Mikkabi, Shizuoka Prefecture, Japan, participated in the study. Radial BMD was measured using dual-energy X-ray absorptiometry. Dietary intakes of antioxidant vitamins and carotenoids were assessed by using a validated food-frequency questionnaire. Dietary patterns were identified on a selected set of antioxidants through principal component factor analysis.
Three dietary patterns were identified. The “retinol” pattern, characterized by notably high intakes of preformed retinol, zeaxanthin, and vitamin E, was positively associated with the risk for low BMD. In contrast, the “β-cryptoxanthin” pattern, characterized by notably high intakes of β-cryptoxanthin and vitamin C, was negatively associated with low BMD. The odds ratios for low BMD in the highest tertiles of dietary intakes of preformed retinol, vitamin C, and β-cryptoxanthin against the lowest tertiles were 3.22 [95% confidence interval (CI), 1.38-7.51], 0.25 (CI, 0.10-0.66), and 0.40 (CI, 0.17-0.92), respectively, after adjustments for confounders. However, negative associations of vitamin C and β-cryptoxanthin with low BMD were not significant after further adjustment for intake of β-cryptoxanthin or vitamin C, respectively. Higher intakes of both vitamin C and β-cryptoxanthin were significantly associated with low BMD (P < 0.05).
The combination of vitamin C and β-cryptoxanthin may be associated with radial BMD in post-menopausal Japanese female subjects.

Sugiura M, Nakamura M, Ogawa K, Ikoma Y…
Osteoporos Int Jan 2011
PMID: 20480147

Vitamin C + Calcium is Associated with Increased Bone Mass in Postmenopausal Women

Abstract

The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study.

Ascorbic acid is a required cofactor in the hydroxylations of lysine and proline necessary for collagen formation; its role in bone cell differentiation and formation is less well characterized. This study examines the cross-sectional relation between dietary vitamin C intake and bone mineral density (BMD) in women from the Postmenopausal Estrogen/Progestin Interventions Trial. BMD (spine and hip) was measured using dual energy X-ray absorptiometry (DXA). The PEPI participants (n = 775) included in this analysis were Caucasian and ranged in age from 45 to 64 years. At the femoral neck and total hip after adjustment for age, BMI, estrogen use, smoking, leisure physical activity, calcium and total energy intake, each 100 mg increment in dietary vitamin C intake, was associated with a 0. 017 g/cm2 increment in BMD (P = 0.002 femoral neck; P = 0.005 total hip). After adjustment, the association of vitamin C with lumbar spine BMD was similar to that at the hip, but was not statistically significant (P = 0.08). To assess for effect modification by dietary calcium, the analyses were repeated, stratified by calcium intake (>500 mg/day and </=500 mg/day). For the femoral neck, women with higher calcium intake had an increment of 0.0190 g/cm2 in BMD per 100 mg vitamin C (P = 0.002). No relation between BMD and vitamin C was evident in the lower calcium stratum. Similar effect modification by calcium was observed at the total hip: the beta coefficient in the higher calcium stratum was similar to that for the total sample (beta = 0.0172, P = 0.01), but no statistically significant relation between total hip BMD and vitamin C was found in the lower calcium subgroup. Although the relation between vitamin C and lumbar spine BMD was of marginal statistical significance in the total sample, among women ingesting higher calcium, a statistically significant association was observed (beta = 0.0199, P = 0.024). These data are consistent with a positive association of vitamin C with BMD in postmenopausal women with dietary calcium intakes of at least 500 mg.

Hall SL, Greendale GA
Calcif. Tissue Int. Sep 1998
PMID: 9701620

Review: Depression and Bone Mass

Abstract

Depression and bone mass.

Although it has been repeatedly suggested that low bone mineral density (BMD) is disproportionately prevalent among patients with depressive disorders, so far depression has not been officially acknowledged as a risk factor for osteoporosis. In a recent meta-analysis comparing depressed with nondepressed individuals we report that BMD is lower in depressed than nondepressed subjects. The association between depression and BMD is stronger in women than men, and in premenopausal than postmenopausal women. Only women psychiatrically diagnosed for major depression display significantly low BMD; women diagnosed by self-rating questionnaires do not. Using a mouse model for depression, we demonstrate a causal relationship between depressive-like behavior and bone loss. The depression-induced bone loss is associated with increases in skeletal norepinephrine and serum corticosterone levels. Bone loss, but not the depressive behavior, could be prevented by a beta-blocker. Hence, depression appears as a significant risk factor for low BMD, causing bone loss through stimulation of the sympathetic nervous system.

Bab IA, Yirmiya R
Ann. N. Y. Acad. Sci. Mar 2010
PMID: 20392233

Lipoic Acid (Barely) Increases Bone Mass in Women with Osteopenia

Abstract

Oral supplementation with antioxidant agents containing alpha lipoic acid: effects on postmenopausal bone mass.

Oxidative stress impacts many age-related degenerative processes, such as in postmenopausal bone loss and in antioxidant defenses that are significantly decreased in elderly osteoporotic women. The authors evaluated the effect of oral supplementation with antioxidant agents containing alpha lipoic acid (ALA) on bone mineral density (BMD) of osteopenic postmenopausal women.
Fifty postmenopausal women with osteopenia (-2.5 < T-score < -1) were prospectively enrolled and randomly assigned to orally receive ALA and other antioxidant agents (vitamin C, vitamin E, and selenium) plus calcium and vitamin D3 (n = 25), or only calcium and vitamin D3 (n = 25). The BMD was estimated at baseline and after 12 months of treatment by heel quantitative ultrasonometry (QUS).
Forty-four patients completed the one-year study: 23 in the ALA group, 21 in the control group. The treatment of ALA group led to a better estimated BMD compared to the control group (0.401 +/- 0.026 vs 0.388 +/- 0.025 g/cm2), although this difference barely achieved a statistical significance (p = 0.048).
These findings, although in a small population, could suggest that oral supplementation with antioxidant agents containing ALA may mitigate bone loss in osteopenic postmenopausal women.

Mainini G, Rotondi M, Di Nola K, Pezzella MT…
Clin Exp Obstet Gynecol 2012
PMID: 23444750