Abstract
A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women.
Our objective in this study was to determine the effects of a high-protein and high-potential renal acid load (PRAL) diet on calcium (Ca) absorption and retention and markers of bone metabolism. In a randomized crossover design, 16 postmenopausal women consumed 2 diets: 1 with low protein and low PRAL (LPLP; total protein: 61 g/d; PRAL: -48 mEq/d) and 1 with high protein and high PRAL (HPHP; total protein: 118 g/d; PRAL: 33 mEq/d) for 7 wk each separated by a 1-wk break. Ca absorption was measured by whole body scintillation counting of radio-labeled (47)Ca. Compared with the LPLP diet, the HPHP diet increased participants’ serum IGF-I concentrations (P < 0.0001), decreased serum intact PTH concentrations (P < 0.001), and increased fractional (47)Ca absorption (mean ± pooled SD: 22.3 vs. 26.5 ± 5.4%; P < 0.05) and urinary Ca excretion (156 vs. 203 ± 63 mg/d; P = 0.005). The net difference between the amount of Ca absorbed and excreted in urine did not differ between 2 diet periods (55 vs. 28 ± 51 mg/d). The dietary treatments did not affect other markers of bone metabolism. In summary, a diet high in protein and PRAL increases the fractional absorption of dietary Ca, which partially compensates for increased urinary Ca, in postmenopausal women. The increased IGF-I and decreased PTH concentrations in serum, with no change in biomarkers of bone resorption or formation, indicate a high-protein diet has no adverse effects on bone health.
Cao JJ, Johnson LK, Hunt JR
J. Nutr. Mar 2011
PMID: 21248199 | Free Full Text
The present study detected no change in potential biomarkers of osteoclast activity, such as blood TRAP, CTX, and sRANKL and urinary DPD, or biomarkers of osteoblast activity, such as blood OPG and OC. The observed changes in IGF-I and PTH were apparently insufficient to elicit detectable changes in biomarkers of osteoclast or osteoblast activity.
Many epidemiological observations have shown that long-term protein intakes are positively associated with bone mineral density (9, 11, 13, 53). Several recent meta-analyses have concluded that protein is beneficial to bone health (54) and protein-induced acid load does not promote skeletal bone mineral loss or contribute to the development of osteoporosis (55, 56). The results from this study are in agreement with those findings.
In conclusion, in postmenopausal women, a diet high in both protein and PRAL increased Ca absorption, at least partially compensating for an increase in urinary excretion. No change in either bone resorption or formation biomarkers was observed, indicating that a high-protein diet is not detrimental. However, the increased serum IGF-I combined with decreased serum PTH concentrations suggest that a high-protein diet could be beneficial to bone health.