Tag Archives: free full text

Saturated Fat Associated with Lower Bone Density; Protein or Vitamin C No Help

Abstract

Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III.

Mounting evidence indicates that the amount and type of fat in the diet can have important effects on bone health. Most of this evidence is derived from animal studies. Of the few human studies that have been conducted, relatively small numbers of subjects and/or primarily female subjects were included. The present study assessed the relation of dietary fat to hip bone mineral density (BMD) in men and women using NHANES III data (n = 14,850). Multivariate models using SAS-callable SUDAAN were used to adjust for the sampling scheme. Models were adjusted for age, sex, weight, height, race, total energy and calcium intakes, smoking, and weight-bearing exercise. Data from women were further adjusted for use of hormone replacement therapy. Including dietary protein, vitamin C, and beta-carotene in the model did not influence the outcome. Analysis of covariance was used to generate mean BMD by quintile of total and saturated fat intake for 4 sex/age groups. Saturated fat intake was negatively associated with BMD at several hip sites. The greatest effects were seen among men < 50 y old (linear trend P = 0.004 for the femoral neck). For the femoral neck, adjusted mean BMD was 4.3% less among men with the highest compared with the lowest quintile of saturated fat intake (BMD, 95% CI: highest quintile: 0.922 g/cm2, 0.909-0.935; lowest quintile: 0.963 g/cm2, 95% CI: 0.950-0.976). These data indicate that BMD is negatively associated with saturated fat intake, and that men may be particularly vulnerable to these effects.

Corwin RL, Hartman TJ, Maczuga SA, Graubard BI
J. Nutr. Jan 2006
PMID: 16365076 | Free Full Text

Vitamin C Increases Collagen Synthesis of Osteoblasts

Abstract

Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.

Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is the major function of OBs and is markedly up-regulated upon ascorbic acid (AA) stimulation, significantly more so than in fibroblast cells. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone protein secretion and deposition. Protein trafficking along the exocytic and endocytic pathways is aided by many molecules, with Rab GTPases being master regulators of vesicle targeting. In this study, we used microarray analysis to identify the Rab GTPases that are up-regulated during a 5-day AA differentiation of OBs, namely Rab1, Rab3d, and Rab27b. Further, we investigated the role of identified Rabs in regulating the trafficking of collagen from the site of synthesis in the ER to the Golgi and ultimately to the plasma membrane utilizing Rab dominant negative (DN) expression. We also observed that experimental halting of biosynthetic trafficking by these mutant Rabs initiated proteasome-mediated degradation of procollagen and ceased global protein translation. Acute expression of Rab1 and Rab3d DN constructs partially alleviated this negative feedback mechanism and resulted in impaired ER to Golgi trafficking of procollagen. Similar expression of Rab27b DN constructs resulted in dispersed collagen vesicles which may represent failed secretory vesicles sequestered in the cytosol. A significant and strong reduction in extracellular collagen levels was also observed implicating the functional importance of Rab1, Rab3d and Rab27b in these major collagen-producing cells.

Nabavi N, Pustylnik S, Harrison RE
PLoS ONE 2012
PMID: 23050002 | Free Full Text

Lipoic Acid Protects from Radiation-Induced Bone Loss in Mice

Abstract

Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse.

Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of (137)Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of alpha-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that alpha-lipoic acid protected cancellous tissue from the detrimental effects of irradiation has potential relevance to astronauts and radiotherapy patients.

Kondo H, Yumoto K, Alwood JS, Mojarrab R…
J. Appl. Physiol. Jan 2010
PMID: 19875718 | Free Full Text

Lipoic Acid Inhibits Osteoclasts and Bone Loss from Inflammation in Mouse Cells

Abstract

alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis.

alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a marginal effect on osteoclastogenesis from bone marrow macrophages induced by receptor activator of NF-kappaB ligand (RANKL). LA inhibited both the sustained up-regulation of RANKL expression and the production of PGE2 induced by IL-1 in osteoblasts. In addition, treatment with either prostaglandin E2 (PGE2) or RANKL rescued IL-1-induced osteoclast formation inhibited by LA or NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, in cocultures. LA blocked IL-1-induced PGE2 production even in the presence of arachidonic acid, without affecting the expression of COX-2 and membrane-bound PGE2 synthase. Dihydrolipoic acid (the reduced form of LA), but not LA, attenuated recombinant COX-2 activity in vitro. LA also inhibited osteoclast formation and bone loss induced by IL-1 and LPS in mice. Our results suggest that the reduced form of LA inhibits COX-2 activity, PGE2 production, and sustained RANKL expression, thereby inhibiting osteoclast formation and bone loss in inflammatory conditions.

Ha H, Lee JH, Kim HN, Kim HM…
J. Immunol. Jan 2006
PMID: 16365401 | Free Full Text

Lipoic Acid Suppresses Osteoclasts

Abstract

Alpha-lipoic acid suppresses osteoclastogenesis despite increasing the receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio in human bone marrow stromal cells.

Growing evidence has shown a biochemical link between increased oxidative stress and reduced bone density. Although alpha-lipoic acid (alpha-LA) has been shown to act as a thiol antioxidant, its effect on bone cells has not been determined. Using proteomic analysis, we identified six differentially expressed proteins in the conditioned media of alpha-LA-treated human bone marrow stromal cell line (HS-5). One of these proteins, receptor activator of nuclear factor kappaB ligand (RANKL), was significantly up-regulated, as confirmed by immunoblotting with anti-RANKL antibody. ELISA showed that alpha-LA stimulated RANKL production in cellular extracts (membranous RANKL) about 5-fold and in conditioned medium (soluble RANKL) about 23-fold, but had no effect on osteoprotegerin (OPG) secretion. Despite increasing the RANKL/OPG ratio, alpha-LA showed a dose-dependent suppression of osteoclastogenesis, both in a coculture system of mouse bone marrow cells and osteoblasts and in a mouse bone marrow cell culture system, and reduced bone resorption in a dose-dependent manner. In addition, alpha-LA-induced soluble RANKL was not inhibited by matrix metalloprotease inhibitors, indicating that soluble RANKL is produced by alpha-LA without any posttranslational processing. In contrast, alpha-LA had no significant effect on the proliferation and differentiation of HS-5 cells. These results suggest that alpha-LA suppresses osteoclastogenesis by directly inhibiting RANKL-RANK mediated signals, not by mediating cellular RANKL production. In addition, our findings indicate that alpha-LA-induced soluble RANKL is not produced by shedding of membranous RANKL.

Koh JM, Lee YS, Byun CH, Chang EJ…
J. Endocrinol. Jun 2005
PMID: 15930166 | Free Full Text

Horny Goat Weed Stimulates Bone, Inhibits Turnover and Resorption in Smoking Rats

Abstract

Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke.
Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined.
Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover.
The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

Gao SG, Cheng L, Li KH, Liu WH…
BMC Musculoskelet Disord 2012
PMID: 22713117 | Free Full Text

Review: Malnutrition Associated with Decreased Bone Mass

Abstract

Assessment and management of nutrition in older people and its importance to health.

Nutrition is an important element of health in the older population and affects the aging process. The prevalence of malnutrition is increasing in this population and is associated with a decline in: functional status, impaired muscle function, decreased bone mass, immune dysfunction, anemia, reduced cognitive function, poor wound healing, delayed recovery from surgery, higher hospital readmission rates, and mortality. Older people often have reduced appetite and energy expenditure, which, coupled with a decline in biological and physiological functions such as reduced lean body mass, changes in cytokine and hormonal level, and changes in fluid electrolyte regulation, delay gastric emptying and diminish senses of smell and taste. In addition pathologic changes of aging such as chronic diseases and psychological illness all play a role in the complex etiology of malnutrition in older people. Nutritional assessment is important to identify and treat patients at risk, the Malnutrition Universal Screening Tool being commonly used in clinical practice. Management requires a holistic approach, and underlying causes such as chronic illness, depression, medication and social isolation must be treated. Patients with physical or cognitive impairment require special care and attention. Oral supplements or enteral feeding should be considered in patients at high risk or in patients unable to meet daily requirements.

Ahmed T, Haboubi N
Clin Interv Aging 2010
PMID: 20711440 | Free Full Text


The full study also has this comment about protein:

Concerns about the detrimental affects of increased protein intake on bone health, renal function, neurological function and cardiovascular function are generally unfounded. It has been recommended that the RDA intake of 1.5 g protein/kg body weight per day is a reasonable intake in older people to optimize protein intake in terms of health and function.

DHEA May Help Depression with Hip Fracture

Abstract

Depression following hip fracture is associated with increased physical frailty in older adults: the role of the cortisol: dehydroepiandrosterone sulphate ratio.

BACKGROUND: Hip fracture in older adults is associated with depression and frailty. This study examined the synergistic effects of depression and hip fracture on physical frailty, and the mediating role of the cortisol:dehydroepiandrosterone sulphate (DHEAS) ratio. METHODS: This was an observational longitudinal study of patients with a hip fracture carried out in a hospital setting and with follow up in the community.Participants were 101 patients aged 60+ years (81 female) with a fractured neck of femur.Measurements of the ability to carry out activities of daily living (ADL), cognitive function, physical frailty and assays for serum cortisol and DHEAS were performed six weeks and six months post-hip fracture. Depressed and non-depressed groups were compared by ANOVA at each time point. RESULTS: Hip fracture patients who developed depression by week six (n = 38) had significantly poorer scores on ADL and walking indices of frailty at both week six and month six, and poorer balance at week six. The association with slower walking speed was mediated by a higher cortisol:DHEAS ratio in the depressed group. CONCLUSION: Depression following hip fracture is associated with greater physical frailty and poorer long term recovery post-injury. Our data indicate that the underlying mechanisms may include an increased cortisol:DHEAS ratio and suggest that correcting this ratio for example with DHEA supplementation could benefit this patient population.

Phillips AC, Upton J, Duggal NA, Carroll D…
BMC Geriatr Jun 2013
PMID: 23773910 | Free Full Text

GH Therapy Cuts Number With Osteopenia in Half in GH-Deficient Adults

Abstract

Effects of 42 months of GH treatment on bone mineral density and bone turnover in GH-deficient adults.

To study the effects of GH treatment for up to 42 months on bone mineral density (BMD) and bone turnover.
BMD with dual energy X-ray absorptiometry, serum type I procollagen carboxy-terminal propeptide (PICP), serum type I collagen carboxy-terminal telopeptide (ICTP) and serum IGF-I were assessed in 71 adults with GH deficiency. There were 44 men and 27 women, aged 20 to 59 (median 43) years. Thirty-two patients completed 36 months and 20 patients 42 months of treatment.
The BMD increased for up to 30-36 months and plateaued thereafter. In the whole study group, the maximum increase of BMD was 5.0% in the lumbar spine (P<0. 001), 5.9% (P<0.01) in the femoral neck, 4.9% (NS, P>0.05) in the Ward’s triangle and 8.2% (P<0.001) in the trochanter area. The serum concentrations of PICP (202.6+/-11.5 vs 116.3+/-5.4 microg/l; mean+/-s.e.m.) and ICTP (10.5+/-0.6 vs 4.4+/-0.3 microg/l) doubled (P<0.001) during the first 6 months of GH treatment but returned to baseline by the end of the study (130.0+/-10.4 and 5.6+/-0.7 microg/l respectively), despite constantly elevated serum IGF-I levels (39. 6+/-4.1 nmol/l at 42 months vs 11.9+/-0.9 nmol/l at baseline; P<0.001). The responses to GH treatment of serum IGF-I, PICP, ICTP (P<0.001 for all; ANOVA) and of the BMD in the lumbar spine (P<0.05), in the femoral neck and the trochanter (P<0.001 for both) were more marked in men than in women. At the end of the study the BMD had increased at the four measurement sites by 5.7-10.6% (P<0.01-0.001) in patients with at least osteopenia at baseline and by 0.1-5.3% (NS P<0.05) in those with normal bone status (P<0.001 for differences between groups; ANOVA). Among patients who completed 36-42 months of treatment, the number of those with at least osteopenia was reduced to more than a half. The response of BMD to GH treatment was more marked in young than in old patients at three measurement sites (P<0. 05-<0.001; ANOVA). In the multiple regression analysis the gender and the pretreatment bone mass appeared to be independent predictors of three measurement sites, whereas the age independently determined only the vertebral BMD.
GH treatment in GH-deficient adults increased BMD for up to 30-36 months, with a plateau thereafter. Concurrently with the plateau in BMD the bone turnover rate normalized. From the skeletal point of view GH-deficient patients exhibiting osteopenia or osteoporosis should be considered as candidates for GH supplementation of at least 3-4 years.

Välimäki MJ, Salmela PI, Salmi J, Viikari J…
Eur. J. Endocrinol. Jun 1999
PMID: 10377504 | Free Full Text


From the full text:

Moreover, in more than a half of the patients the criteria of osteopenia disappeared or there was an improvement of the bone state from osteoporosis to osteopenia.

Xylitol Preserves Bone in Ovariectomized Rats

Abstract

Dietary xylitol protects against weakening of bone biomechanical properties in ovariectomized rats.

The effects of dietary xylitol (xyl) on bone biomechanical properties in ovariectomized rats (ovx) were studied. Forty-two 3-mo-old female Wistar rats were divided into three groups of 14. Rats in two groups were ovariectomized, while those in the control group underwent a sham operation. All rats received a basal diet, and half of the ovx were given an additional 10 g/100 g dietary xyl supplementation. Three months later the rats were killed and their tibias, femurs and humeri were prepared. The tibias were used for analyses of bone density and trabecular bone volume (BV/TV) and for the three-point bending test. The femurs were used for the torsion test and for the loading test of the femoral neck. The humeri were used for analyses of bone ash weight and bone concentrations of calcium and phosphorus. Dietary xyl gave a significant protection against ovariectomy-caused decline of tibial stress in the three-point bending test, of femoral shear stress in the torsion test, and of stress of the femoral neck, without affecting bone elasticity values. Xyl restricted the ovariectomy-caused reduction in bone density, in bone ash weight and in concentrations of bone calcium and phosphorus. Furthermore, trabecular bone loss in ovx was significantly suppressed by dietary xyl. These results indicate that a 10% dietary supplementation of xyl in ovx has a protective effect against the weakening of bone biomechanical properties. This is related to greater BV/TV and maintained bone mineral content.

Mattila PT, Svanberg MJ, Pökkä P, Knuuttila ML
J. Nutr. Oct 1998
PMID: 9772154 | Free Full Text