Tag Archives: free full text

Resveratrol Analogues Show No Effect on Bones In Rats

Abstract

Potential of resveratrol analogues as antagonists of osteoclasts and promoters of osteoblasts.

The plant phytoalexin resveratrol was previously demonstrated to inhibit the differentiation and bone resorbing activity of osteoclasts, to promote the formation of osteoblasts from mesenchymal precursors in cultures, and inhibit myeloma cell proliferation, when used at high concentrations. In the current study, we screened five structurally modified resveratrol analogues for their ability to modify the differentiation of osteoclasts and osteoblasts and proliferation of myeloma cells. Compared to resveratrol, analogues showed an up to 5,000-fold increased potency to inhibit osteoclast differentiation. To a lesser extent, resveratrol analogues also promoted osteoblast maturation. However, they did not antagonize the proliferation of myeloma cells. The potency of the best-performing candidate in vitro was tested in vivo in an ovariectomy-induced model of osteoporosis, but an effect on bone loss could not be detected. Based on their powerful antiresorptive activity in vitro, resveratrol analogues might be attractive modulators of bone remodeling. However, further studies are required to establish their efficacy in vivo.

Kupisiewicz K, Boissy P, Abdallah BM, Hansen FD…
Calcif. Tissue Int. Nov 2010
PMID: 20842496 | Free Full Text

Quercetin Protects Human Osteoblasts Cells Exposed to Cigarette Smoke

Abstract

Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1.

Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS). The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM) rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

Braun KF, Ehnert S, Freude T, Egaña JT…
ScientificWorldJournal 2011
PMID: 22203790 | Free Full Text

Hydrolyzed Collagen Increases Bone Mass in Exercising Rats

Abstract

Hydrolyzed collagen intake increases bone mass of growing rats trained with running exercise.

Some studies have shown that dietary hydrolyzed collagen peptides (HC) effectively prevent age-related bone loss. However, it is not known whether the intake of HC also has positive effect on bone mass or strength when combined with exercise during growth phase.
We examined the effects of 11 weeks of HC intake and running exercise on bone mass and strength in growing rats. Rats were randomized into four groups, the 20% casein group (Casein20), the 40% casein group (Casein40), the 20% HC group (HC20), and the 40% HC group (HC40). Each group was further divided into exercise groups (Casein20 + Ex, Casein40 + Ex, HC20 + Ex, HC40 + Ex) and non-exercise group (Casein20, Casein40, HC20, HC40). In the HC intake groups, 30% of casein protein was replaced with HC. Exercise group rats were trained 6 days per week on a treadmill (25-30 m/min, 60 min) for 60 days. After being sacrificed, their bone mineral content (BMC) and bone strength were evaluated.
Exercise and dietary HC effects were observed in the adjusted BMC of lumbar spine and tibia among the 20% protein groups (p < 0.001 for exercise; p < 0.05 for dietary HC, respectively). These effects were also noted in the adjusted wet weight and dry weight of femur among the 20% protein groups (p < 0.001, p < 0.01 for exercise; p < 0.01, p < 0.001 for dietary HC, respectively). On the other hand, in adjusted bone breaking force and energy, dietary HC effect was not significant. Among the 40% protein groups, similar results were obtained in the adjusted BMC, femoral weight, bone breaking force, and energy. There were no differences between the 20% protein groups and the 40% protein groups.
The present study demonstrated that moderate HC intake (where the diet contains 20% protein, of which 30% is HC) increased bone mass during growth period and further promoted the effect of running exercise. On the other hand, a higher HC intake (where the diet contains 40% protein, of which 30% is HC) had no more beneficial effect on bone mass than the moderate HC intake.

Takeda S, Park JH, Kawashima E, Ezawa I…
J Int Soc Sports Nutr 2013
PMID: 23914839 | Free Full Text

Low Dose Aspirin May Increase Bone Resorption in Diabetic Mice

Abstract

Low dose aspirin therapy decreases blood glucose levels but does not prevent type i diabetes-induced bone loss.

Diabetes is strongly associated with increased fracture risk. During T1-diabetes onset, levels of blood glucose and pro-inflammatory cytokines (including TNFα) are increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased 40 days later at which point bone loss is clearly evident. Inflammation is known to suppress bone formation and induce bone loss. Previous co-culture studies indicate that diabetic bone is inflamed and diabetic bone marrow is capable of enhancing osteoblast death in vitro. Here we investigate a commonly used non-steroidal anti-inflammatory drug, aspirin, to prevent T1-diabetic bone loss in vivo.
We induced diabetes in 16-week-old male C57BL/6 mice and administered aspirin in the drinking water.
Our results demonstrate that aspirin therapy reduced diabetic mouse non-fasting blood glucose levels to less than 400 mg/dl, but did not prevent trabecular and cortical bone loss. In control mice, aspirin treatment increased bone formation markers but did not affect markers of bone resorption or bone density/volume. In diabetic mice, bone formation markers and bone density/volume are decreased and unaltered by aspirin treatment. Bone resorption markers, however, are increased and 2-way ANOVA analysis demonstrates an interaction between aspirin treatment and diabetes (p<0.007). Aspirin treatment did not prevent the previously reported diabetes-induced marrow adiposity.
Taken together, our results suggest that low dose aspirin therapy does not negatively impact bone density in control and diabetic mice, but could potentially increase bone resorption in T1-diabetic mice.

Coe LM, Denison JD, McCabe LR
Cell. Physiol. Biochem. 2011
PMID: 22178944 | Free Full Text

Review: NSAIDs May Inhibit Bone Healing

Abstract

Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis.

Nonsteroidal anti-inflammatory drugs (NSAIDs) play an essential part in our approach to control pain in the posttraumatic setting. Over the last decades, several studies suggested that NSAIDs interfere with bone healing while others contradict these findings. Although their analgesic potency is well proven, clinicians remain puzzled over the potential safety issues. We have systematically reviewed the available literature, analyzing and presenting the available in vitro animal and clinical studies on this field. Our comprehensive review reveals the great diversity of the presented data in all groups of studies. Animal and in vitro studies present so conflicting data that even studies with identical parameters have opposing results. Basic science research defining the exact mechanism with which NSAIDs could interfere with bone cells and also the conduction of well-randomized prospective clinical trials are warranted. In the absence of robust clinical or scientific evidence, clinicians should treat NSAIDs as a risk factor for bone healing impairment, and their administration should be avoided in high-risk patients.

Pountos I, Georgouli T, Calori GM, Giannoudis PV
ScientificWorldJournal 2012
PMID: 22272177 | Free Full Text

Vitamin D3 + K2 + Sr + Mg + DHA as Effective as Bisphosphonates in Women

Abstract

Combination of Micronutrients for Bone (COMB) Study: bone density after micronutrient intervention.

Along with other investigations, patients presenting to an environmental health clinic with various chronic conditions were assessed for bone health status. Individuals with compromised bone strength were educated about skeletal health issues and provided with therapeutic options for potential amelioration of their bone health. Patients who declined pharmacotherapy or who previously experienced failure of drug treatment were offered other options including supplemental micronutrients identified in the medical literature as sometimes having a positive impact on bone mineral density (BMD). After 12 months of consecutive supplemental micronutrient therapy with a combination that included vitamin D(3), vitamin K(2), strontium, magnesium and docosahexaenoic acid (DHA), repeat bone densitometry was performed. The results were analyzed in a group of compliant patients and demonstrate improved BMD in patients classified with normal, osteopenic and osteoporotic bone density. According to the results, this combined micronutrient supplementation regimen appears to be at least as effective as bisphosphonates or strontium ranelate in raising BMD levels in hip, spine, and femoral neck sites. No fractures occurred in the group taking the micronutrient protocol. This micronutrient regimen also appears to show efficacy in individuals where bisphosphonate therapy was previously unsuccessful in maintaining or raising BMD. Prospective clinical trials are required to confirm efficacy.

Genuis SJ, Bouchard TP
J Environ Public Health 2012
PMID: 22291722 | Free Full Text

Prickly Pear Improves Bone Density in Women

Abstract

Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women.

The intake of dehydrated nopal (DN) at a high stage of maturity along with high calcium content could improve bone mineral density (BMD) and calciuria and thus prevent osteoporosis.
To evaluate the effect of calcium intake from a vegetable source (DN) on BMD and calciuria covering a 2-year period in menopausal and non-menopausal women with low bone mass (LBM).
The study was quasi-experimental, blinded, and randomized, and included 131 Mexican women aged 35-55. Urinary calcium/creatinine index (CCI) was determined; BMD was analyzed on lumbar spine and total hip regions. Four groups were studied: Control group (CG), women with normocalciuria and a minimum dose of DN; experimental group 1 (EG1), women with hypercalciuria and a minimum dose of DN; experimental group 2 (EG2), women with hypercalciuria, and a maximum dose of DN; and normal group (NG) for reference in BMD.
After the first semester of treatment, calciuria levels in women from both experimental groups returned to normal, remaining constant for the rest of the treatment. The percentage difference in BMD increased in the total hip region in the CG (pre 4.5% and post 2.1%) and EG2 (pre 1.8% and post 2.5%) groups significantly in comparison to NG and EG1, which exhibited a significant decrease in their BMD. BMD increased only for the lumbar region in the EG2 group (premenopausal).
The use of a vegetable calcium source such as nopal improves BMD in women with LBM in the total hip and lumbar spine regions principally in the premenopausal women, maintaining constant and normal calciuria levels.

Aguilera-Barreiro Mde L, Rivera-Márquez JA, Trujillo-Arriaga HM, Tamayo Y Orozco JA…
Food Nutr Res 2013
PMID: 23704856 | Free Full Text

Cowpeas Increase Bone Density in Ovariectomized Rats

Abstract

Effect of dietary legumes on bone-specific gene expression in ovariectomized rats.

In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor κB ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-α and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

Park Y, Moon HJ, Paik DJ, Kim DY
Nutr Res Pract Jun 2013
PMID: 23766879 | Free Full Text

Beta Blocker Suppresses Resorption in Rats

Abstract

Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation.

Bones are widely innervated, suggesting an important role for the sympathetic regulation of bone metabolism, although there are controversial studies. We investigated the effects of propranolol in a model of experimental periodontal disease.
Rats were assigned as follows: animals without ligature; ligated animals receiving vehicle and ligated animals receiving 0.1, 5 or 20 mg·kg(-1) propranolol. After 30 days, haemodynamic parameters were measured by cardiac catheterization. Gingival tissues were removed and assessed for IL-1β, TNF-α and cross-linked carboxyterminal telopeptides of type I collagen (CTX) by elisa, or intercellular adhesion molecule 1 (ICAM-1), receptor activator of NF-κ B ligand (RANKL) and osteoprotegerin (OPG) by Western blot analysis. Sections from the mandibles were evaluated for bone resorption. Also, we analysed the ability of propranolol to inhibit osteoclastogenesis in vitro.
Propranolol at 0.1 and 5 mg·kg(-1) reduced the bone resorption as well as ICAM-1 and RANKL expression. However, only 0.1 mg·kg(-1) reduced IL-1β, TNF-α and CTX levels as well as increased the expression of OPG, but did not alter any of the haemodynamic parameters. Propranolol also suppressed in vitro osteoclast differentiation and resorptive activity by inhibiting the nuclear factor of activated T cells (NFATc)1 pathway and the expression of tartrate-resistant acid phosphatase (TRAP), cathepsin K and MMP-9.
Low doses of propranolol suppress bone resorption by inhibiting RANKL-mediated osteoclastogenesis as well as inflammatory markers without affecting haemodynamic parameters.

Rodrigues WF, Madeira MF, da Silva TA, Clemente-Napimoga JT…
Br. J. Pharmacol. Apr 2012
PMID: 21950592 | Free Full Text

Beta Blockers Improved Bone in Hypertensive Rats from Beta2 Blockade

Abstract

Effects of propranolol on bone metabolism in spontaneously hypertensive rats.

The effects of propranolol (PRO), a nonselective beta-adrenergic receptor (beta-AR) antagonist with membrane-stabilizing action on bone metabolism, were examined in spontaneously hypertensive rats (SHR) showing osteoporosis with hyperactivity of the sympathetic nervous system. Treatment of SHR with PRO at 1 and 5 mg/kg p.o. for 12 weeks increased bone mass of the lumbar vertebra and proximal tibia without affecting blood pressure, but PRO at 50 and 100 mg/kg with hypotensive action did not increase bone mass. Next, the effects of PRO at 0.1, 1, and 10 mg/kg on bone status were examined in more detail. Compared with the SHR control, not only bone mass but also biomechanical parameters of strength and toughness of the lumbar vertebrae were increased in SHR treated with PRO at 0.1 and 1 mg/kg, suggesting antiosteoporotic action. PRO at 1 mg/kg statistically increased histomorphometry indices of bone formation, whereas PRO at doses of 0.1, 1, and 10 mg/kg decreased those of bone resorption. Antiosteoporotic effect of PRO is attenuated at 10 mg/kg compared with 0.1 and 1 mg/kg. In addition, treatment with timolol, a nonselective beta-AR antagonist without membrane-stabilizing action, or butoxamine, a selective beta2-AR antagonist, at 1 mg/kg increased bone mass in SHR. These results suggested that treatment of SHR with beta-blockers at low dose improved bone loss and bone fragility. This antiosteoporotic effect of beta-blockers seems to be caused by the blocking action of beta2-AR, regardless of the membrane-stabilizing action.

Sato T, Arai M, Goto S, Togari A
J. Pharmacol. Exp. Ther. Jul 2010
PMID: 20404011 | Free Full Text


It is possible that a beta1 blocker, like Metoprolol, would not be effective.