Tag Archives: free full text

EGCG Inhibits Osteoclasts in Mice

Abstract

Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal.

Epigallocatechin-3-gallate (EGCG), the major anti-inflammatory compound in green tea, has been shown to suppress osteoclast differentiation. However, the precise molecular mechanisms underlying the inhibitory action of EGCG in osteoclastogenesis and the effect of EGCG on inflammation-mediated bone destruction remain unclear. In this study, we found that EGCG inhibited osteoclast formation induced by osteoclastogenic factors in bone marrow cell-osteoblast cocultures but did not affect the ratio of receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) to osteoprotegerin induced by osteoclastogenic factors in osteoblasts. We also found that EGCG inhibited osteoclast formation from bone marrow macrophages (BMMs) induced by macrophage colony-stimulating factor plus RANKL in a dose-dependent manner without cytotoxicity. Pretreatment with EGCG significantly inhibited RANKL-induced the gene expression of c-Fos and nuclear factor of activated T-cells (NFATc1), essential transcription factors for osteoclast development. EGCG suppressed RANKL-induced activation of c-Jun N-terminal protein kinase (JNK) pathway, among the three well known mitogen-activated protein kinases and also inhibited RANKL-induced phosphorylation of the NF-kappaB p65 subunit at Ser276 and NF-kappaB transcriptional activity without affecting the degradation of IkappaBalpha and NF-kappaB DNA-binding in BMMs. The inhibitory effect of EGCG on osteoclast formation was somewhat reversed by retroviral c-Fos overexpression, suggesting that c-Fos is a downstream target for antiosteoclastogenic action of EGCG. In addition, EGCG treatment reduced interleukin-1-induced osteoclast formation and bone destruction in mouse calvarial bone in vivo. Taken together, our data suggest that EGCG has an antiosteoclastogenic effect by inhibiting RANKL-induced the activation of JNK/c-Jun and NF-kappaB pathways, thereby suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.

Lee JH, Jin H, Shim HE, Kim HN…
Mol. Pharmacol. Jan 2010
PMID: 19828731 | Free Full Text

Coffee Delays Bone Repair in Rats

Abstract

Effects of cigarette smoke inhalation and coffee consumption on bone formation and osseous integration of hydroxyapatite implant.

The present study aims to assess the effects of cigarette smoke inhalation and/or coffee consumption on bone formation and osseous integration of a dense hydroxyapatite (DHA) implant in rats. For this study, 20 male rats were divided into four groups (n = 5): CT (control) group, CE (coffee) group, CI (cigarette) group and CC (coffee + cigarette) group. During 16 weeks, animals in the CI group were exposed to cigarette smoke inhalation equivalent to 6 cigarettes per day; specimens in the CE group drank coffee as liquid diet; and rats in the CC group were submitted to both substances. In the 6th week a 5 mm slit in the parietal bone and a 4 mm slit in the tibia were performed on the left side: the former was left open while the latter received a DHA implant. As soon as surgeries were finished, the animals returned to their original protocols and after 10 weeks of exposure they were euthanised (ethically sacrificed) and the mentioned bones collected for histological processing. Data showed that exposure to cigarette smoke inhalation and coffee consumption did not interfere in weight gain and that solid and liquid diet consumption was satisfactory. Rats in the CC group showed a decrease in bone neoformation around the tibial DHA implant (31.8 ± 2.8) as well as in bone formation in the parietal slit (28.6 ± 2.2). On their own, cigarette smoke inhalation or coffee consumption also led to diminished bone neoformation around the implant and delayed the bone repair process in relation to the CT group. However, reduction in the bone repair process was accentuated with exposure to both cigarette smoke inhalation and coffee consumption in this study.

Andrade AR, Sant’Ana DC, Mendes JA, Moreira M…
Braz J Biol Feb 2013
PMID: 23644799 | Free Full Text

Tea Protects Bone in Older Women

Abstract

Tea drinking is associated with benefits on bone density in older women.

Impaired hip structure assessed by dual-energy X-ray absorptiometry (DXA) areal bone mineral density (aBMD) is an independent predictor for osteoporotic hip fracture. Some studies suggest that tea intake may protect against bone loss.
Using both cross-sectional and longitudinal study designs, we examined the relation of tea consumption with hip structure. Randomly selected women (n = 1500) aged 70-85 y participated in a 5-y prospective trial to evaluate whether oral calcium supplements prevent osteoporotic fractures. aBMD at the hip was measured at years 1 and 5 with DXA. A cross-sectional analysis of 1027 of these women at 5 y assessed the relation of usual tea intake, measured by using a questionnaire, with aBMD. A prospective analysis of 164 women assessed the relation of tea intake at baseline, measured by using a 24-h dietary recall, with change in aBMD from years 1 to 5.
In the cross-sectional analysis, total hip aBMD was 2.8% greater in tea drinkers (x: 806; 95% CI: 797, 815 mg/cm(2)) than in non-tea drinkers (784; 764, 803 mg/cm(2)) (P < 0.05). In the prospective analysis over 4 y, tea drinkers lost an average of 1.6% of their total hip aBMD (-32; -45, -19 mg/cm(2)), but non-tea drinkers lost 4.0% (-13; -20, -5 mg/cm(2)) (P < 0.05). Adjustment for covariates did not influence the interpretation of results.
Tea drinking is associated with preservation of hip structure in elderly women. This finding provides further evidence of the beneficial effects of tea consumption on the skeleton.

Devine A, Hodgson JM, Dick IM, Prince RL
Am. J. Clin. Nutr. Oct 2007
PMID: 17921409 | Free Full Text

Cola Associated with Low Bone Density in Older Women

Abstract

Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: The Framingham Osteoporosis Study.

Soft drink consumption may have adverse effects on bone mineral density (BMD), but studies have shown mixed results. In addition to displacing healthier beverages, colas contain caffeine and phosphoric acid (H3PO4), which may adversely affect bone.
We hypothesized that consumption of cola is associated with lower BMD. BMD was measured at the spine and 3 hip sites in 1413 women and 1125 men in the Framingham Osteoporosis Study by using dual-energy X-ray absorptiometry. Dietary intake was assessed by food-frequency questionnaire. We regressed each BMD measure on the frequency of soft drink consumption for men and women after adjustment for body mass index, height, age, energy intake, physical activity score, smoking, alcohol use, total calcium intake, total vitamin D intake, caffeine from noncola sources, season of measurement, and, for women, menopausal status and estrogen use.
Cola intake was associated with significantly lower (P < 0.001-0.05) BMD at each hip site, but not the spine, in women but not in men. The mean BMD of those with daily cola intake was 3.7% lower at the femoral neck and 5.4% lower at Ward’s area than of those who consumed <1 serving cola/mo. Similar results were seen for diet cola and, although weaker, for decaffeinated cola. No significant relations between noncola carbonated beverage consumption and BMD were observed. Total phosphorus intake was not significantly higher in daily cola consumers than in nonconsumers; however, the calcium-to-phosphorus ratios were lower.
Intake of cola, but not of other carbonated soft drinks, is associated with low BMD in women. Additional research is needed to confirm these findings.

Tucker KL, Morita K, Qiao N, Hannan MT…
Am. J. Clin. Nutr. Oct 2006
PMID: 17023723 | Free Full Text

Fish or Fish Oil No Association With Fracture – 2010

Abstract

Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study.

Marine n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be beneficial for bone health, but few studies have investigated the association with fish consumption. Our aim was to study associations of fish and EPA + DHA consumption with bone mineral density (BMD) and hip fracture risk and determine whether high linoleic acid (LA) intake, the major dietary n-6 PUFA, modifies the associations. The study population consisted of 5045 participants aged 65 years and older from the Cardiovascular Health Study. Data on BMD were available for 1305 participants. Food-frequency questionnaire was used to assess dietary intake, and hip fracture incidence was assessed prospectively by review of hospitalization records. After multivariable adjustment, femoral neck BMD was 0.01 g/cm(2) lower in the highest versus lowest tuna/other-fish intake category (p = .05 for trend). EPA + DHA intake (higher versus lower median of 0.32 g/day) was associated with lower femoral neck BMD (0.66 versus 0.71 g/cm(2), p < .001) among those with LA intake greater than the median 12.1 g/day (p = .03 for interaction). No significant associations were found with total-hip BMD. During mean follow-up of 11.1 years, 505 hip fractures occurred. Fish or EPA + DHA consumption was not significantly associated with fracture incidence [hazard ratio (HR) for extreme categories: HR = 1.23, 95% confidence interval (CI) 0.83-1.84 for tuna/other fish; HR = 1.16, 95% CI 0.91-1.49 for fried fish; and HR = 0.98, 95% CI 0.71-1.36 for EPA + DHA]. High LA intake did not modify these associations. In this large prospective cohort of older adults, fish consumption was associated with very small differences in BMD and had no association with hip fracture risk.

Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ…
J. Bone Miner. Res. Sep 2010
PMID: 20572022 | Free Full Text

Protein + Calcium Protects Against Fractures in the Framingham Study – 2010

Abstract

Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort.

The effect of protein on bone is controversial, and calcium intake may modify protein’s effect on bone. We evaluated associations of energy-adjusted tertiles of protein intake (ie, total, animal, plant, animal/plant ratio) with incident hip fracture and whether total calcium intake modified these associations in the Framingham Offspring Study. A total of 1752 men and 1972 women completed a baseline food frequency questionnaire (1991-1995 or 1995-1998) and were followed for hip fracture until 2005. Hazard ratios (HRs) were estimated using Cox proportional hazards regression adjusting for confounders. Baseline mean age was 55 years (SD 9.9 years, range 26 to 86 years). Forty-four hip fractures occurred over 12 years of follow-up. Owing to significant interaction between protein (total, animal, animal/plant ratio) and calcium intake (p interaction range = .03 to .04), stratified results are presented. Among those with calcium intakes less than 800 mg/day, the highest tertile (T3) of animal protein intake had 2.8 times the risk of hip fracture [HR = 2.84, 95% confidence interval (CI) 1.20-6.74, p = .02] versus the lowest tertile (T1, p trend = .02). In the 800 mg/day or more group, T3 of animal protein had an 85% reduced hip fracture risk (HR = 0.15, 95% CI 0.02-0.92, p = .04) versus T1 (p trend = .04). Total protein intake and the animal/plant ratio were not significantly associated with hip fracture (p range = .12 to .65). Our results from middle-aged men and women show that higher animal protein intake coupled with calcium intake of 800 mg/day or more may protect against hip fracture, whereas the effect appears reversed for those with lower calcium intake. Calcium intake modifies the association of protein intake and the risk of hip fracture in this cohort and may explain the lack of concordance seen in previous studies.

Sahni S, Cupples LA, McLean RR, Tucker KL…
J. Bone Miner. Res. Dec 2010
PMID: 20662074 | Free Full Text

Fish May Protect Bone in Older Adults – 2011

Abstract

Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study.

Polyunsaturated fatty acids and fish may influence bone health.
We aimed to examine associations between dietary polyunsaturated fatty acid and fish intakes and hip bone mineral density (BMD) at baseline (1988-1989; n = 854) and changes 4 y later in adults (n = 623) with a mean age of 75 y in the Framingham Osteoporosis Study.

BMD measures were regressed on energy-adjusted quartiles of fatty acid intakes [n-3 (omega-3): α-linolenic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and EPA+ DHA; n-6 (omega-6): linoleic acid (LA) and arachidonic acid (AA); and n-6:n-3 ratio] and on categorized fish intakes, with adjustment for covariates. Effect modification by EPA+DHA intake was tested for n-6 exposures.
High intakes (≥3 servings/wk) of fish relative to lower intakes were associated with maintenance of femoral neck BMD (FN-BMD) in men (dark fish + tuna, dark fish, and tuna) and in women (dark fish) (P < 0.05). Significant interactions between AA and EPA+DHA intakes were observed cross-sectionally in women and longitudinally in men. In women with EPA+DHA intakes at or above the median, those with the highest AA intakes had a higher mean baseline FN-BMD than did those with the lowest intakes (quartile 4 compared with quartile 1: P = 0.03, P for trend = 0.02). In men with the lowest EPA+DHA intakes (quartile 1), those with the highest intakes of AA (quartile 4) lost more FN-BMD than did men with the lowest intakes of AA (quartile 1; P = 0.04). LA intake tended to be associated with FN-BMD loss in women (P for trend < 0.06).
Fish consumption may protect against bone loss. The protective effects of a high AA intake may be dependent on the amount of EPA+DHA intake.

Farina EK, Kiel DP, Roubenoff R, Schaefer EJ…
Am. J. Clin. Nutr. May 2011
PMID: 21367955 | Free Full Text

Fish Consumption Helps Maintain Bone in Spanish Women – 2013

Abstract

Dietary habits, nutrients and bone mass in Spanish premenopausal women: the contribution of fish to better bone health.

The moderate consumption of fish is recommended for a healthy diet and is also a feature of the Mediterranean diet. Fish is a major food group in diets throughout the world, and studies show that fish consumption is associated with a lower risk of a number of conditions. Spain has one of the highest annual per capita consumptions of fish worldwide. As fish is a source of high quality protein; n-3 polyunsaturated fatty acids; vitamins, such as A and D; and minerals, such as selenium, calcium, iodine, magnesium, copper and zinc, nutrients that have positive effects on bone characteristics, it has been proposed that its consumption could improve bone health. In this cross-sectional study, we have investigated the relationship between dietary habits and nutrient intake of 151 Spanish premenopausal women and analyzed the association of fish consumption on bone mass measured by quantitative ultrasound of the phalanges. A higher (P < 0.05) bone mass and vitamin D intake (P < 0.05) was observed in the group with a fish intake of 5-7 servings/week. We conclude that increased fish consumption is helpful in maintaining an adequate bone mass in Spanish premenopausal women.

Calderon-Garcia JF, Moran JM, Roncero-Martin R, Rey-Sanchez P…
Nutrients Jan 2013
PMID: 23271510 | Free Full Text

Animal Protein Associated with Decreased Ultrasound Bone Measurement in Women – 2005

Abstract

The relation between dietary protein, calcium and bone health in women: results from the EPIC-Potsdam cohort.

The role of dietary protein in bone health is controversial. The objective of the present study was to examine the association between protein intake, dietary calcium, and bone structure measured by broadband ultrasound attenuation (BUA).
Our analysis includes 8,178 female study participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) Potsdam Study. Ultrasound bone measurements were performed on the right os calcis, and BUA was determined. Dietary intake was assessed by a standardized food frequency questionnaire. We applied linear regression models to estimate the association between dietary protein and BUA.
After multivariate adjustment, high intake of animal protein was associated with decreased BUA values (beta = -0.03; p = 0.010) whereas high vegetable protein intake was related to an increased BUA (beta = 0.11; p = 0.007). The effect of dietary animal protein on BUA was modified by calcium intake.
High consumption of protein from animal origin may be unfavourable, whereas a higher vegetable protein intake may be beneficial for bone health. Our results strengthen the hypothesis that high calcium intake combined with adequate protein intake based on a high ratio of vegetable to animal protein may be protective against osteoporosis.

Weikert C, Walter D, Hoffmann K, Kroke A…
Ann. Nutr. Metab. Sep-Oct 2005
PMID: 16088096 | Free Full Text

Protein Sulfur Associated with Lower Bone Density in Postmenopausal Women – 2008

Abstract

A positive association of lumbar spine bone mineral density with dietary protein is suppressed by a negative association with protein sulfur.

Dietary protein is theorized to hold both anabolic effects on bone and demineralizing effects mediated by the diet acid load of sulfate derived from methionine and cysteine. The relative importance of these effects is unknown but relevant to osteoporosis prevention. Postmenopausal women (n = 161, 67.9 +/- 6.0 y) were assessed for areal bone mineral density (aBMD) of lumbar spine (LS) and total hip (TH) using dual X-ray absorptiometry, and dietary intakes of protein, sulfur-containing amino acids, and minerals using a USDA multiple-pass 24-h recall. The acidifying influence of the diet was estimated using the ratio of protein:potassium intake, the potential renal acid load (PRAL), and intake of sulfate equivalents from protein. aBMD was regressed onto protein intake then protein was controlled for estimated dietary acid load. A step-down procedure assessed potential confounding influences (weight, age, physical activity, and calcium and vitamin D intakes). Protein alone did not predict LS aBMD (P = 0.81); however, after accounting for a negative effect of sulfate (beta = -0.28; P < 0.01), the direct effect of protein intake was positive (beta = 0.22; P = 0.04). At the TH, protein intake predicted aBMD (beta = 0.18; P = 0.03), but R2 did not improve with adjustment for sulfate (P = 0.83). PRAL and the protein:potassium ratio were not significant predictors of aBMD. Results suggest that protein intake is positively associated with aBMD, but benefit at the LS is offset by a negative impact of the protein sulfur acid load. If validated experimentally, these findings harmonize conflicting theories on the role of dietary protein in bone health.

Thorpe M, Mojtahedi MC, Chapman-Novakofski K, McAuley E…
J. Nutr. Jan 2008
PMID: 18156408 | Free Full Text