Tag Archives: animal

Cissus Reduces Bone Loss in Rats

Abstract

Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis.

The increasing incidence of postmenopausal osteoporosis and its related fractures have become global health issues in the recent days. Postmenopausal osteoporosis is the most frequent metabolic bone disease; it is characterized by a rapid loss of mineralized bone tissue. Hormone replacement therapy has proven efficacious in preventing bone loss but not desirable to many women due to its side-effects. Therefore we are in need to search the natural compounds for a treatment of postmenopausal symptoms in women with no toxic effects. In the present study, we have evaluated the effect of petroleum-ether extract of Cissus quadrangularis Linn. (CQ), a plant used in folk medicine, on an osteoporotic rat model developed by ovariectomy. In this experiment, healthy female Wistar rats were divided into four groups of six animals each. Group 1 was sham operated. All the remaining groups were ovariectomized. Group 2 was fed with an equivolume of saline and served as ovariectomized control (OVX). Groups 3 and 4 were orally treated with raloxifene (5.4 mg/kg) and petroleum-ether extract of CQ (500 mg/kg), respectively, for 3 months. The findings were assessed on the basis of animal weight, morphology of femur, and histochemical localization of alkaline phosphatase (ALP) (an osteoblastic marker) and tartrate-resistant acid phosphatase (TRAP) (an osteoclastic marker) in upper end of femur. The study revealed for the first time that the petroleum-ether extract of CQ reduced bone loss, as evidenced by the weight gain in femur, and also reduced the osteoclastic activity there by facilitating bone formation when compared to the OVX group. The osteoclastic activity was confirmed by TRAP staining, and the bone formation was assessed by ALP staining in the femur sections. The color intensity of TRAP and ALP enzymes from the images were evaluated by image analysis software developed locally. The effect of CQ was found to be effective on both enzymes, and it might be a potential candidate for prevention and treatment of postmenopausal osteoporosis. The biological activity of CQ on bone may be attributed to the phytogenic steroids present in it.

Potu BK, Rao MS, Nampurath GK, Chamallamudi MR…
Ups. J. Med. Sci. 2009
PMID: 19736603 | Free Full Text

Cissus Stimulates Fetal Bone in Rats

Abstract

Petroleum ether extract of Cissus quadrangularis (LINN) stimulates the growth of fetal bone during intra uterine developmental period: a morphometric analysis.

The aim of the present study was to analyze the effect Cissus quadrangularis plant petroleum ether extract on the development of long bones during the intra-uterine developmental stage in rats.
Pregnant rats (n=12) were randomly assigned into either a control group (n=6) or a Cissus quadrangularis treatment (n=6) group. Pregnant rats in the Cissus quadrangularis group were treated with Cissus quadrangularis petroleum ether extract at a dose of 500 mg/kg body weight from gestation day 9 until delivery. The animals in the control group received an equal volume of saline. Newborn pups were collected from both groups for alizarin red S – alcian blue staining to differentiate ossified and unossified cartilage. The ossified cartilage (bone) was morphometrically analyzed using Scion image software.
Morphometric analysis revealed that the percentage of the total length of ossified cartilage (bone) in pups born to treated dams was significantly higher (P<0.001- -0.0001) than that of the control group.
The results of the present study suggest that maternal administration of Cissus quadrangularis petroleum ether extract during pregnancy can stimulate the development of fetal bone growth during the intra-uterine developmental period.

Potu BK, Rao MS, Kutty NG, Bhat KM…
Clinics (Sao Paulo) Dec 2008
PMID: 19061006 | Free Full Text

Cissus May Increase Osteoblasts via MAPK

Abstract

Cissus quadrangularis extract enhances biomineralization through up-regulation of MAPK-dependent alkaline phosphatase activity in osteoblasts.

Cissus quadrangularis Linn. has been implicated as therapeutic agent for enhancing bone healing. Though its osteogenic activity has been suggested, the underlying mechanism still remains unclear. In the present study, the effects of ethanol extract of C. quadrangularis (CQ-E) on osteoblast differentiation and function were analyzed using murine osteoblastic cells. The results indicated that mRNA expressions of osteoblast-related genes were not affected by the CQ-E treatment. However, alkaline phosphatase (ALP) activity and the extent of mineralized nodules were significantly increased in treated cells compared with controls. The addition of an extracellular regulated kinase 1/2 inhibitor, a Jun N-terminal kinase 1/2/3 inhibitor and a p38 mitogen-activated protein kinase (MAPK) inhibitor resulted in significantly decreased ALP activity, preferentially by p38 MAPK inhibitor. These results suggested that CQ-E may regulate osteoblastic activity by enhancing ALP activity and mineralization process, and the increased ALP activity effect of CQ-E is likely mediated by MAPK-dependent pathway.

Parisuthiman D, Singhatanadgit W, Dechatiwongse T, Koontongkaew S
In Vitro Cell. Dev. Biol. Anim.
PMID: 19057968

Alendronate Suppresses Bone Formation From Exercise in Rats

Abstract

Cancellous bone formation response to simulated resistance training during disuse is blunted by concurrent alendronate treatment.

The purpose of this study was to assess the effectiveness of simulated resistance training (SRT) exercise combined with alendronate (ALEN) in mitigating or preventing disuse-associated losses in cancellous bone microarchitecture and formation. Sixty male Sprague-Dawley rats (6 months old) were randomly assigned to either cage control (CC), hind limb unloading (HU), HU plus either ALEN (HU + ALEN), SRT (HU + SRT), or a combination of ALEN and SRT (HU + SRT/ALEN) for 28 days. HU + SRT and HU + SRT/ALEN rats were anesthetized and subjected to muscle contractions once every 3 days during HU (four sets of five repetitions, 1000 ms isometric + 1000 ms eccentric). Additionally, HU + ALEN and HU + SRT/ALEN rats received 10 µg/kg of body weight of ALEN three times per week. HU reduced cancellous bone-formation rate (BFR) by 80%, with no effect of ALEN treatment (-85% versus CC). SRT during HU significantly increased cancellous BFR by 123% versus CC, whereas HU + SRT/ALEN inhibited the anabolic effect of SRT (-70% versus HU + SRT). SRT increased bone volume and trabecular thickness by 19% and 9%, respectively, compared with CC. Additionally, osteoid surface (OS/BS) was significantly greater in HU + SRT rats versus CC (+32%). Adding ALEN to SRT during HU reduced Oc.S/BS (-75%), Ob.S/BS (-72%), OS/BS (-61%), and serum TRACP5b (-36%) versus CC. SRT and ALEN each independently suppressed a nearly twofold increase in adipocyte number evidenced with HU and inhibited increases in osteocyte apoptosis. These results demonstrate the anabolic effect of a low volume of high-intensity muscle contractions during disuse and suggest that both bone resorption and bone formation are suppressed when SRT is combined with bisphosphonate treatment.

Swift JM, Swift SN, Nilsson MI, Hogan HA…
J. Bone Miner. Res. Sep 2011
PMID: 21509821

Similar Results From Minimal vs. High Resistance Exercise in Rats

Abstract

Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise.

This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.

Swift JM, Gasier HG, Swift SN, Wiggs MP…
J. Appl. Physiol. Dec 2010
PMID: 20930128 | Free Full Text

Calcium and Exercise in Rats

Abstract

Short- and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats.

At the level of prevention of bone mineral loss produced by ovariectomy, the aim of the present study was to determine the effect produced by supplementation of Ca in the diet and a moderate exercise programme (treadmill), simultaneously or separately, in ovariectomized rats, an experimental model of postmenopausal bone loss. Female Wistar rats (n 110, 15 weeks old) were divided into five groups: (1) OVX, rats ovariectomized at 15 weeks of age, fed a standard diet; (2) SHAM, rats sham operated at 15 weeks of age, fed a standard diet; (3) OVX-EX, ovariectomized rats, fed a standard diet and performing the established exercise programme; (4) OVX-Ca, ovariectomized rats fed a diet supplemented with Ca; (5) OVX-EXCa, ovariectomized rats with the exercise programme and diet supplemented with Ca. The different treatments were initiated 1 week after ovariectomy and were continued for 13 weeks for subgroup 1 and 28 weeks for subgroup 2, to look at the interaction of age and time passed from ovariectomy on the treatments. Bone mineral density (BMD) was determined, at the end of the study, in the lumbar spine (L2, L3 and L4) and in the left femur using a densitometer. Bone turnover was also estimated at the end of the study, measuring the serum formation marker total alkaline phosphatase (AP) and the resorption marker serum tartrate-resistant acid phosphatase (TRAP). As expected, OVX rats showed a significant decrease (P<0.05) in BMD, more pronounced in subgroup 2, and a significant increase in AP and TRAP with regard to their respective SHAM group. The simultaneous treatment with Ca and exercise produced the best effects on lumbar and femoral BMD of ovariectomized rats, partially avoiding bone loss produced by ovariectomy, although it was not able to fully maintain BMD levels of intact animals. This combined treatment produced a significant increase in AP, both in subgroups 1 and 2, and a decrease in TRAP in subgroup 1, with regard to OVX group. The exercise treatment alone was able to produce an increase in BMD with regard to OVX group only in subgroup 1 of rats (younger animals and less time from ovariectomy), but not in subgroup 2. In agreement with this, there was an increase of AP in both subgroups, lower than that observed in animals submitted to exercise plus Ca supplement, and a decrease of TRAP in subgroup 1, without significant changes in this marker in the older rats. Ca treatment did not produce any significant effect on BMD in OVX rats in both subgroups of animals, showing a decrease of AP and TRAP levels in the younger animals with no significant variations in markers of bone remodelling in the older female rats compared with their respective OVX group.

Gala J, Díaz-Curiel M, de la Piedra C, Calero J
Br. J. Nutr. Oct 2001
PMID: 11591240


I don’t know what to make of this.

Review: Exercise & Bones

Abstract

The effect of physical activity and its interaction with nutrition on bone health.

Physical activity (PA) is a popular therapy for the prevention and treatment of bone loss and osteoporosis because it has no adverse side effects, it is low cost, and it confers additional benefits such as postural stability and fall prevention. Bone mass is regulated by mechanical loading, and is limited but not controlled by diet. The mechanism by which strain thresholds turn bone remodelling ‘on’ and ‘off’ is known as the mechanostat theory. Research in animals has shown that optimal strains are dynamic, with a high change rate, an unusual distribution and a high magnitude of strain, but the results of randomized controlled trials in human subjects have been somewhat equivocal. In the absence of weight-bearing activity nutritional or endocrine interventions cannot maintain bone mass. Biochemical markers of bone turnover predict bone mass changes, and findings from our research group and others have shown that both acute and chronic exercise can reduce bone resorption. Similarly, Ca intervention studies have shown that supplementation can reduce bone resorption. Several recent meta-analytical reviews concur that changes in bone mass with exercise are typically 2-3%. Some of these studies suggest that Ca intake may influence the impact of PA on bone, with greater effects in Ca-replete subjects. Comparative studies between Asian (high PA, low Ca intake) and US populations (low PA, high Ca intake) suggest that PA may permit an adaptation to low Ca intakes. Whether Ca and PA interact synergistically is one of the most important questions unanswered in the area of lifestyle-related bone health research.

Murphy NM, Carroll P
Proc Nutr Soc Nov 2003
PMID: 15018482

Running Improves Calcium Balance in Rats

Abstract

Hypokinesia-induced negative net calcium balance reversed by weight-bearing exercise.

Negative calcium balance and bone loss occurring with immobilization and hypokinesia have been attributed to a lack of weight bearing on bones. The effects of weight-bearing exercise for promotion of calcium balance after hypokinesia were examined. Rats were randomly assigned to either hypokinetic suspension for 28 d or to a control sedentary group, free to move about their cages at will. After 28 d, the rats in each group were randomly subdivided to either post-hypokinetic forced running (HR), post-hypokinetic sedentary (HS), control forced running (CR), or control sedentary (CS) groups. Net calcium balance was then determined for 25 consecutive days. Net calcium balance of HR was negative for the first 5-d period of recovery and then became positive; that of HS was negative for 25 d; that of CR and CS remained essentially positive. Net calcium absorption paralleled net calcium balance. Forced running was effective in reestablishment of positive net calcium balance after 28 d of decreased weight bearing.

Lutz J, Chen F, Kasper CE
Aviat Space Environ Med Apr 1987
PMID: 3579816

Olive Oil Mitigates Osteoporosis in Rats

Abstract

Olive oil effectively mitigates ovariectomy-induced osteoporosis in rats.

Osteoporosis, a reduction in bone mineral density, represents the most common metabolic bone disease. Postmenopausal women are particularly susceptible to osteoporosis when their production of estrogen declines. For these women, fracture is a leading cause of morbidity and mortality. This study was conducted to evaluate the protective effects of olive oil supplementation against osteoporosis in ovariectomized (OVX) rats.
We studied adult female Wistar rats aged 12-14 months, divided into three groups: sham-operated control (SHAM), ovariectomized (OVX), and ovariectomized rats supplemented with extravirgin olive oil (Olive-OVX) orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after. At the end of the experiment, blood samples were collected. Plasma levels of calcium, phosphorus, alkaline phosphatase (ALP), malondialdehyde (MDA), and nitrates were assayed. Specimens from both the tibia and the liver were processed for light microscopic examination. Histomorphometric analysis of the tibia was also performed.
The OVX-rats showed a significant decrease in plasma calcium levels, and a significant increase in plasma ALP, MDA, and nitrates levels. These changes were attenuated by olive oil supplementation in the Olive-OVX rats. Light microscopic examination of the tibia of the OVX rats revealed a significant decrease in the cortical bone thickness (CBT) and the trabecular bone thickness (TBT). In addition, there was a significant increase in the osteoclast number denoting bone resorption. In the Olive-OVX rats these parameters were markedly improved as compared to the OVX group. Examination of the liver specimens revealed mononuclear cellular infiltration in the portal areas in the OVX-rats which was not detected in the Olive-OVX rats.
Olive oil effectively mitigated ovariectomy-induced osteoporosis in rats, and is a promising candidate for the treatment of postmenopausal osteoporosis.

Saleh NK, Saleh HA
BMC Complement Altern Med 2011
PMID: 21294895 | Free Full Text

Tyrosol and Hydroxytyrosol (from Olive Oil) Prevent Osteopenia in Rats

Abstract

Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model.

This study was conducted to determine whether the daily consumption for 84 days of tyrosol and hydroxytyrosol, the main olive oil phenolic compounds, and olive oil mill wastewater (OMWW), a byproduct of olive oil production, rich in micronutrients, may improve bone loss in ovariectomized rats (an experimental model of postmenopausal osteoporosis) and in ovariectomized rats with granulomatosis inflammation (a model set up for senile osteoporosis). As expected, an induced chronic inflammation provoked further bone loss at total, metaphyseal, and diaphyseal sites in ovariectomized rats. Tyrosol and hydroxytyrosol prevented this osteopenia by increasing bone formation ( p < 0.05), probably because of their antioxidant properties. The two doses of OMWW extracts had the same protective effect on bone ( p < 0.05), whereas OMWW did not reverse established osteopenia. In conclusion, polyphenol consumption seems to be an interesting way to prevent bone loss.

Puel C, Mardon J, Agalias A, Davicco MJ…
J. Agric. Food Chem. Oct 2008
PMID: 18800805