Tag Archives: animal

Daidzein Alone Did Not Preserve Trabecular Bone in Ovariectomized Mice

Abstract

Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice.

As the prevalence of osteoporosis is increasing, and the adverse effects of hormone replacement therapy are evident, women are searching for natural alternatives such as soy isoflavones to help prevent postmenopausal osteoporosis. Daidzein is one of the most abundant isoflavones present in soy and it is unique as it can be further metabolized to equol, a compound with greater estrogenic activity than other isoflavones. The objective of this study was to determine the effects of purified daidzein in combination with high calcium (Ca) on preserving femur and lumbar vertebrae (LV1-LV4) bone mineral density (BMD) and biomechanical bone strength at three different sites (femur midpoint, femur neck and LV3) in ovariectomized mice. Sham (SH) mice (n = 12) received control diet (AIN93G) containing 2 g Ca/kg diet and ovariectomized mice were randomized to 1 of 6 groups (n = 12/group): OVX (2 g Ca/kg diet), HCa (25 g Ca/kg diet), HD (2 g Ca + 200 mg daidzein/kg diet), HDCa (25 g Ca + 200 mg daidzein/kg diet), LD (2 g Ca + 100 mg daidzein/kg diet) or LDCa (25 g Ca + 100 mg daidzein/kg diet) for 12 weeks. HDCa preserved femur and vertebrae BMD and biomechanical bone strength (at all three sites) compared to the OVX group, however, only femur yield load (at midpoint) was preserved to a level that was greater (P < 0.05) than HCa alone. Mice fed HD diet had greater (P < 0.05) femur BMD than OVX group, however, daidzein alone (HD) did not appear to preserve trabecular bone (i.e., vertebrae BMD and vertebra peak load). All mice fed daidzein produced equol and there were no uterotrophic effects of daidzein at either dose. Both daidzein and Ca attenuated the increase in serum IL-1beta observed in the OVX group. The results from this study suggest that the combination of daidzein and high Ca favorably affect cortical and trabecular bone as indicated by femur and lumbar vertebrae BMD and biomechanical strength but much of this effect is mediated by the high Ca diet. Further investigation is required to determine optimal dietary levels of daidzein and Ca with the long-term goal of developing a dietary strategy to prevent postmenopausal osteoporosis and related fragility fractures.

Fonseca D, Ward WE
Bone Aug 2004
PMID: 15268901

Genistein Increases Bone Density While Being an Anti-Estrogen Elsewhere in Ovariectomized Mice

Abstract

Estrogenic agonism and antagonism of the soy isoflavone genistein in uterus, bone and lymphopoiesis in mice.

The isoflavone genistein (Gen) is a naturally occurring phytoestrogen found in high concentrations in soy. The biological effects of Gen have been extensively studied. The immunomodulating properties of Gen are, however, less well investigated and the results are contradictory. Our aim was to study possible estrogen agonistic and antagonistic properties of Gen in uterus, bone, lymphopoiesis and B-cell function by comparing effects in castrated and intact female mice, respectively. Oophorectomized (OVX) and sham-operated mice were treated with s.c. doses of 17beta-estradiol (E2) (0.16 mg/kg), Gen (50 mg/kg), or vehicle (olive oil) as control. Effects on bone mineral density (BMD) were studied using peripheral quantitative computerized tomography, uterine and thymus weights were examined, lymphopoiesis in thymus and bone marrow was analyzed using flow cytometry, and the frequency of immunoglobulin-producing B cells in bone marrow and spleen was studied using an ELISPOT assay. Gen was clearly antagonizing endogenous estrogen in sham-operated female mice as shown by inhibiting the uterine weight and by increasing the frequency of B lymphopoietic cells in bone marrow. The only agonistic effect of Gen was shown by increased BMD in OVX mice. Our results are discussed in the context of estrogen receptor biology.

Erlandsson MC, Islander U, Moverare S, Ohlsson C…
APMIS May 2005
PMID: 16011657

Isoflavones More Effective Than Pure Genistein in Ovariectomized Rats

Abstract

Comparison of the bone protective effects of an isoflavone-rich diet with dietary and subcutaneous administrations of genistein in ovariectomized rats.

Administration of the isoflavone genistein (GEN) has been described to result in bone protection but also to induce uterotrophic responses. To compare bone protective effects of GEN with an isoflavone-rich diet (IRD) and to further elucidate molecular mechanisms involved in bone-protection, ovariectomized rats (OVX) received either a diet low in isoflavone content (IDD) enriched with GEN (42 mg kg(-1)b.wtd(-1)) (GEN(d)), an IRD (14 mg kg(-1)b.wtd(-1) GEN, 14 mg kg(-1)b.wtd(-1) daidzein) or were treated subcutaneously (s.c.) with GEN (10 mg kg(-1)b.wtd(-1)) (GEN(sc)) for 12 weeks. Intact (SHAM), vehicle treated OVX animals and those substituted with 17beta-estradiol (2microg kg(-1)b.wtd(-1)) (E(2)), served as controls. OVX-induced bone loss could be antagonized in E(2), GEN(sc), GEN(d) and IRD groups. Uterine wet weight (UWW) was only stimulated in E(2) and GEN(sc) animals. Serum biomarkers of bone-formation (osteocalcin, osteopontin) and bone-resorption (telopeptides of collagen type I, pyridinoline cross-links) were elevated in OVX compared to SHAM and E(2) animals. Feeding IRD stimulated bone-formation and inhibited bone-resorption, whereas s.c. or dietary administration of GEN only resulted in a stimulation of bone-formation. The results of the present study indicate that in contrast to s.c. administration, dietary intake of GEN resulted in bone protection without stimulation of UWW. Dietary intake of isoflavones by an IRD also did not result in a stimulation of UWW, yet IRD appeared to be more effective in bone protection than administration of pure GEN.

Hertrampf T, Schleipen B, Offermanns C, Velders M…
Toxicol. Lett. Feb 2009
PMID: 19063953

Genistein May Work by Suppressing Inflammation in Ovariectomized Rats

Abstract

The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats.

The incidence of fractures and of osteoporosis differs between Oriental and Western Caucasian women. This may depend, at least in part, on nutritional factors, including dissimilarities in dietary intake of phytoestrogens. To investigate this possibility, 2-month-old female rats were ovariectomized (OVX) or sham-operated (SHAM), fed a casein-based diet, injected daily with subcutaneous genistein (GEN), the most abundant and best characterized phytoestrogen, or vehicle (Veh) and killed 21 days after surgery. As expected, ovariectomy resulted in loss of bone mineral density (BMD) and in uterine atrophy. However, administration of 5 micrograms GEN per gram body weight (b.w.) ameliorated the ovariectomy-induced loss of BMD (189 +/- 2 mg/cm2 in OVX and 192 +/- 2 in OVX with 5 micrograms GEN/g b.w. per day; p < 0.05). One microgram GEN per gram body weight did not affect the BMD loss and the effect of the 5 micrograms and 25 micrograms GEN per gram body weight were statistically not different. A trend toward reduced uterine atrophy (21% reduction) was noted with the 25 micrograms GEN dose, but not with the 1 microgram and 5 micrograms doses. A separate experiment with 2 x 2 factorial design was conducted to elucidate the mechanism by which GEN ameliorates ovariectomy-induced bone loss. In this experiment, histomorphometry demonstrated a dramatic reduction in trabecular bone volume after ovariectomy (7.6 +/- 0.7% of total bone volume in SHAM-Veh vs 3.3 +/- 0.2% in OVX-Veh; p < 0.01) and less bone loss in OVX rats injected with 5 micrograms GEN per gram per day (3.3 +/- 0.2% of total bone volume in OVX-Veh vs 5.2 +/- 0.4% in OVX-GEN; p < 0.01). Administration of GEN was associated with higher bone formation rate per tissue volume and with a trend toward a higher number of osteoblasts per bone perimeter. The parameters of bone resorption were not affected by GEN. The concentration of serum osteocalcin and the urinary excretion of deoxypyridinoline provided corroborating results. Since production of proinflammatory cytokines is intimately involved in the pathogenesis of postmenopausal osteoporosis, the effect of GEN on lipopolysaccharide-induced in vitro production of Tumor necrosis factor-alpha (TNF alpha) was tested in monocytic cells from the same four rat groups. Production of TNF alpha was markedly elevated in OVX-Veh as compared with the SHAM-Veh rats, but this was blocked by GEN in the OVX rats. This study shows that GEN reduces both trabecular and compact bone loss after ovariectomy and that this protective effect differs from that of estrogen, since it depends on stimulation of bone formation rather than on suppression of bone resorption. Lack of action of GEN on uterine atrophy supports the possibility that this GEN dose affects target tissues via non-estrogenic mechanisms. Modulation of cytokine production may be involved in the effect of GEN on bone.

Fanti P, Monier-Faugere MC, Geng Z, Schmidt J…
Osteoporos Int 1998
PMID: 9797913

Lactoferrin Improves Bone Density and Strength In Vivo, and Inhibits Osteoclasts and Stimulates Osteoblasts In Vitro in Ovariectomized Mice

Abstract

Oral bovine lactoferrin improves bone status of ovariectomized mice.

The aim of the present study was to evaluate the effect of dietary lactoferrin on bone metabolism in vivo using a postmenopausal animal model. We investigated whether bovine lactoferrin (bLF) ingestion could prevent bone loss in ovariectomized mice. Twelve-week-old female C3H mice either ovariectomized or sham operated were fed for 27 wk with the control diet (AIN-93M with 140 g of total milk protein as a protein source per kg of diet). Four groups of ovariectomized mice received diets including different concentrations of bLF (1, 5, 10, or 20 g of total milk protein were replaced by bLF). Ovariectomy induced a decreased uterine weight and a smaller gain of bone mineral density. Immunoreactive bLF was detected in the peripheral blood, and its concentration was related to the amount of bLF ingestion. bLF supplementation to the diet improved bone mineral density (BMD) and femoral failure load in a dose-dependent manner. We confirmed the direct effects of bLF in vitro using established and primary cultures of murine bone cells. Addition of bLF to the culture medium at a concentration of between 1 and 1,000 microg/ml stimulated both cell growth and differentiation of osteoblastic MC3T3 cells while inhibiting the growth of preosteoclastic RAW 267.4 cells. In primary culture of mixed bone cells, an enhanced osteoblast differentiation was associated with an inhibition of osteoclast differentiation at lower bLF concentrations (1-10 microg/ml). In conclusion, these findings suggest that dietary lactoferrin supplementation can have a beneficial effect on postmenopausal bone loss by modulating bone formation and resorption.

Blais A, Malet A, Mikogami T, Martin-Rouas C…
Am. J. Physiol. Endocrinol. Metab. Jun 2009
PMID: 19336659 | Free Full Text

CAPE (From Propolis) Inhibits Osteoclasts

Abstract

Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF kappaB and downregulating NFATc1 and c-Fos.

Osteoclasts are multinuclear cells of myeloid lineage responsible for bone resorption. The anti-inflammatory property of caffeic acid phenethyl ester (CAPE), an active component of the propolis of honeybee hives, has been revealed. Since the regulatory mechanism of differentiation and activation of osteoclasts shares many well-known signaling pathways with that of inflammation, we investigated whether CAPE has any effect on osteoclastogenesis. CAPE potently suppressed osteoclastogenesis in cultures of bone marrow-derived precursor cells with the osteoclast differentiation factor, receptor activator of nuclear factor kappaB ligand (RANKL). While the RANKL-stimulated activation of the ERK, JNK, and p38 MAPK signaling pathways was not affected, the DNA binding and transcription activity of NF kappaB were reduced by CAPE treatment. In addition, CAPE blocked the induction of NFATc1 and c-Fos following RANKL stimulation. Forced expression of c-Fos could reverse the inhibitory effect of CAPE on osteoclastogenesis. Finally, CAPE significantly inhibited the RANKL-induced osteoclast formation in mouse calvariae in vivo. We propose that CAPE might be useful as a therapeutic agent for treatment of bone destructive diseases.

Ha J, Choi HS, Lee Y, Lee ZH…
Int. Immunopharmacol. Jun 2009
PMID: 19285574

Carnitine Slows Bone Growth (and Loss) in Ovariectomized Rats

Abstract

Dietary l-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats.

Postmenopausal bone loss is a major public health concern. Although drug therapies are available, women are interested in alternative/adjunct therapies to slow down the bone loss associated with ovarian hormone deficiency. The purpose of this study was to determine whether dietary supplementation of l-carnitine can influence bone density and slow the rate of bone turnover in an aging ovariectomized rat model. Eighteen-month-old Fisher-344 female rats were ovariectomized and assigned to two groups: (1) a control group in which rats were fed ad libitum a carnitine-free (-CN) diet (AIN-93M) and (2) another fed the same diet but supplemented with l-carnitine (+CN). At the end of 8 weeks of feeding, animals were sacrificed and bone specimens were collected for measuring bone mineral content (BMC) and density (BMD) using dual energy X-ray absorptiometry. Femoral microarchitectural properties were assessed by microcomputed tomography. Femoral mRNA levels of selected bone matrix proteins were determined by northern blot analysis. Data showed that tibial BMD was significantly higher in the rat fed the +CN diet than those fed the -CN (control) diet. Dietary carnitine significantly decreased the mRNA level of tartrate-resistant acid phosphatase (TRAP), an indicator of bone resorption by 72.8%, and decreased the mRNA abundance of alkaline phosphatase (ALP) and collagen type-1 (COL), measures of bone formation by 63.6% and 61.2%, respectively. The findings suggest that carnitine supplementation slows bone loss and improves bone microstructural properties by decreasing bone turnover.

Hooshmand S, Balakrishnan A, Clark RM, Owen KQ…
Phytomedicine Aug 2008
PMID: 18539446 | Free Full Text


The part in red above is negative for bone growth. The full text notes:

Our data here showed that carnitine decreased the mRNA levels of TRAP as well as ALP and COL, suggesting that carnitine may suppress bone turnover by decreasing the rates of both bone resorption and formation.

CLA Inhibits Osteoclasts in Mouse Cells

Abstract

Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling.

Bone destruction is a pathological hallmark of several chronic inflammatory diseases, including rheumatoid arthritis, periodontitis, and osteoporosis. Inflammation-induced bone loss of this sort results from increased numbers of bone-resorbing osteoclasts. Numerous studies have indicated that conjugated linoleic acid (CLA) positively influences calcium and bone metabolism. Gene-deletion studies have shown that receptor activator of nuclear factor-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. In this report, we examine the ability of CLA to suppress RANKL signaling and osteoclastogenesis in RAW264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated nuclear factor-kappaB (NF-kappaB), and preexposure of the cells to CLA significantly suppressed RANKL-induced NF-kappaB activation, including phosphorylation of I-kappaBalpha, degradation of I-kappaBalpha, and nuclear translocation of p65. RANKL induced osteoclastogenesis in these monocytic cells, and CLA inhibited RANKL-induced tumor necrosis factor-alpha production and osteoclast differentiation, including osteoclast-specific genes such as tartrate-resistant acid phosphatase, cathepsin K, calcitonin receptor, and matrix metalloproteinase-9 expression and osteoclast-specific transcription factors such as c-Fos, nuclear factor of activated T-cells expression, and bone resorption pit formation. CLA also inhibited RANKL-induced activation of mitogen-activated protein kinase p38 but had little effect on c-Jun N-terminal kinase activation. Collectively, these data demonstrate for the first time that CLA inhibits osteoclastogenesis by modulating RANKL signaling. Thus, CLA may have important therapeutic implications for the treatment of bone diseases associated with enhanced bone resorption by excessive osteoclastogenesis.

Rahman MM, Bhattacharya A, Fernandes G
J. Lipid Res. Aug 2006
PMID: 16702601 | Free Full Text

CLA Prevents Bone Loss from Corticosteroids in Rats

Abstract

Conjugated linoleic acid prevents growth attenuation induced by corticosteroid administration and increases bone mineral content in young rats.

Corticosteroids are a common therapy in many disease states, despite frequent and potentially serious side effects. Nutritional supplementation with conjugated linoleic acid (CLA) has been shown to increase fat-free mass, whereas supplementation with n-3 and n-6 fatty acids has been shown to increase bone mineral density (BMD). To determine whether CLA can attenuate the side effects of 8 weeks of corticosteroid administration, we randomized twenty-four 5-week-old male Sprague-Dawley rats into 1 of 4 groups: control; control + methylprednisolone (7 mg.kg-1.week-1); CLA diet (1% CLA w/w); or CLA plus methylprednisolone. Body composition, bone mineral content (BMC), and BMD were assessed with dual-energy X-ray absorptiometry at the onset and at the end of the 8-week intervention. The mechanical properties of bone were determined using 3-point femur bending at the end of the intervention. Methylprednisolone resulted in an attenuation of the increase in body mass and lean mass over the 8 weeks (p < 0.05). CLA prevented the methylprednisolone-induced attenuation of body mass and lean mass accumulation. CLA also resulted in a greater increase in BMC (p < 0.05) in the lumbar spine. The energy at failure of the isolated femurs was increased with CLA (p < 0.05). Dietary CLA prevents many of the growth- and bone-related side effects arising from 8 weeks of corticosteroid administration, results in greater increases in BMC and BMD, and can contribute to an improvement in some of the mechanical properties of bone.

Roy BD, Bourgeois J, Rodriguez C, Payne E…
Appl Physiol Nutr Metab Dec 2008
PMID: 19088767

CLA No Help in Athletes

Abstract

Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers.

Conjugated linoleic acids (CLA) are essential fatty acids that have been reported in animal studies to decrease catabolism, promote fat loss, increase bone density, enhance immunity, and serve as an antiatherogenic and anticarcinogenic agent. For this reason, CLA has been marketed as a supplement to promote weight loss and general health. CLA has also been heavily marketed to resistance-trained athletes as a supplement that may help lessen catabolism, decrease body fat, and promote greater gains in strength and muscle mass during training. Although basic research is promising, few studies have examined whether CLA supplementation during training enhances training adaptations and/or affects markers of health. This study evaluated whether CLA supplementation during resistance training affects body composition, strength, and/or general markers of catabolism and immunity. In a double-blind and randomized manner, 23 experienced, resistance-trained subjects were matched according to body mass and training volume and randomly assigned to supplement their diet with 9 g;pdd(-1) of an olive oil placebo or 6 g;pdd(-1) of CLA with 3 g;pdd(-1) of fatty acids for 28 days. Prior to and following supplementation, fasting blood samples, total body mass, and dual-energy X-ray absorptiometry (DEXA) determined body composition, and isotonic bench press and leg press 1 repetition maximums (1RMs) were determined. Results revealed that although some statistical trends were observed with moderate to large effect sizes, CLA supplementation did not significantly affect (p > 0.05) changes in total body mass, fat-free mass, fat mass, percent body fat, bone mass, strength, serum substrates, or general markers of catabolism and immunity during training. These findings indicate that CLA does not appear to possess significant ergogenic value for experienced resistance-trained athletes.

Kreider RB, Ferreira MP, Greenwood M, Wilson M…
J Strength Cond Res Aug 2002
PMID: 12173945