Tag Archives: animal

Oxytocin Reverses Osteoporosis in Female but Not Male Mice

Abstract

Oxytocin reverses osteoporosis in a sex-dependent manner.

The increase of life expectancy has led to the increase of age-related diseases such as osteoporosis. Osteoporosis is characterized by bone weakening promoting the occurrence of fractures with defective bone regeneration. Men aged over 50 have a prevalence for osteoporosis of 20%, which is related to a decline in sex hormones occurring during andropause or surgical orchidectomy. As we previously demonstrated in a mouse model for menopause in women that treatment with the neurohypophyseal peptide hormone oxytocin (OT) normalizes body weight and prevents the development of osteoporosis, herein we addressed the effects of OT in male osteoporosis. Thus, we treated orchidectomized mice, an animal model suitable for the study of male osteoporosis, for 8 weeks with OT and then analyzed trabecular and cortical bone parameters as well as fat mass using micro-computed tomography. Orchidectomized mice displayed severe bone loss, muscle atrophy accompanied by fat mass gain as expected in andropause. Interestingly, OT treatment in male mice normalized fat mass as it did in female mice. However, although OT treatment led to a normalization of bone parameters in ovariectomized mice, this did not happen in orchidectomized mice. Moreover, loss of muscle mass was not reversed in orchidectomized mice upon OT treatment. All of these observations indicate that OT acts on fat physiology in both sexes, but in a sex specific manner with regard to bone physiology.

Beranger GE, Djedaini M, Battaglia S, Roux CH…
Front Endocrinol (Lausanne) 2015
PMID: 26042090 | Free Full Text

Oxytocin Reverses Osteopenia in Ovariectomized Mice

Abstract

Oxytocin reverses ovariectomy-induced osteopenia and body fat gain.

Osteoporosis and overweight/obesity constitute major worldwide public health burdens that are associated with aging. A high proportion of women develop osteoporosis and increased intraabdominal adiposity after menopause. which leads to bone fractures and metabolic disorders. There is no efficient treatment without major side effects for these 2 diseases. We previously showed that the administration of oxytocin (OT) normalizes ovariectomy-induced osteopenia and bone marrow adiposity in mice. Ovariectomized mice, used as an animal model mimicking menopause, were treated with OT or vehicle. Trabecular bone parameters and fat mass were analyzed using micro-computed tomography. Herein, we show that this effect on trabecular bone parameters was mediated through the restoration of osteoblast/osteoclast cross talk via the receptor activator of nuclear factor-κB ligand /osteoprotegerin axis. Moreover, the daily administration of OT normalized body weight and intraabdominal fat depots in ovariectomized mice. Intraabdominal fat mass is more sensitive to OT that sc fat depots, and this inhibitory effect is mediated through inhibition of adipocyte precursor’s differentiation with a tendency to lower adipocyte size. OT treatment did not affect food intake, locomotors activity, or energy expenditure, but it did promote a shift in fuel utilization favoring lipid oxidation. In addition, the decrease in fat mass resulted from the inhibition of the adipose precursor’s differentiation. Thus, OT constitutes an effective strategy for targeting osteopenia, overweight, and fat mass redistribution without any detrimental effects in a mouse model mimicking the menopause.

Beranger GE, Pisani DF, Castel J, Djedaini M…
Endocrinology Apr 2014
PMID: 24506069

Sclerostin Inhibitor Increases Bone Strength More than the Controls in Rats

Abstract

Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis.

The development of bone-rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostin’s role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl-AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six-month-old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency-induced bone loss, at which point Scl-AbII was administered for 5 wk. Scl-AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency-induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non-ovariectomized control rats. Taken together, these preclinical results establish sclerostin’s role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody-mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone-related disorders, such as postmenopausal osteoporosis.

Li X, Ominsky MS, Warmington KS, Morony S…
J. Bone Miner. Res. Apr 2009
PMID: 19049336

Sclerostin Inhibitor Increases Bone Formation, Density, and Strength in Monkeys

Abstract

Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength.

The development of bone-rebuilding anabolic agents for treating bone-related conditions has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation. More recently, administration of sclerostin-neutralizing monoclonal antibodies in rodent studies has shown that pharmacologic inhibition of sclerostin results in increased bone formation, bone mass, and bone strength. To explore the effects of sclerostin inhibition in primates, we administered a humanized sclerostin-neutralizing monoclonal antibody (Scl-AbIV) to gonad-intact female cynomolgus monkeys. Two once-monthly subcutaneous injections of I were administered at three dose levels (3, 10, and 30 mg/kg), with study termination at 2 months. Scl-AbIV treatment had clear anabolic effects, with marked dose-dependent increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. Bone densitometry showed that the increases in bone formation with Scl-AbIV treatment resulted in significant increases in bone mineral content (BMC) and/or bone mineral density (BMD) at several skeletal sites (ie, femoral neck, radial metaphysis, and tibial metaphysis). These increases, expressed as percent changes from baseline were 11 to 29 percentage points higher than those found in the vehicle-treated group. Additionally, significant increases in trabecular thickness and bone strength were found at the lumbar vertebrae in the highest-dose group. Taken together, the marked bone-building effects achieved in this short-term monkey study suggest that sclerostin inhibition represents a promising new therapeutic approach for medical conditions where increases in bone formation might be desirable, such as in fracture healing and osteoporosis.

Ominsky MS, Vlasseros F, Jolette J, Smith SY…
J. Bone Miner. Res. May 2010
PMID: 20200929

Review: Sclerostin Inhibition: A New Approach

Abstract

Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis.

Osteoporosis and osteoporosis-related fractures are growing problems with the aging population and are associated with significant morbidity and mortality. At this time, other than parathyroid hormone analogs, all therapies for osteoporosis are antiresorptive. Therefore, researchers have focused efforts on development of more anabolic therapies. Understanding of the Wnt signaling pathway, which is critical for skeletal development, and the role of sclerostin in inhibition of Wnt signaling has led to the discovery of a novel therapeutic approach in the treatment of osteoporosis – sclerostin inhibition. In this review, we discuss the biology of Wnt signaling and sclerostin inhibition. We then discuss human disorders of decreased sclerostin function and animal models of sclerostin inhibition. Both have served to elucidate the effects of decreased sclerostin levels and function – increased bone mass and strength and fewer fractures. In addition, we review data from Phase I and II studies of the two humanized sclerostin monoclonal antibodies, romosozumab and blosozumab, both of which have had positive effects on bone mineral density. We conclude with a discussion of the ongoing Phase III studies of romosozumab. The available data support the potential for neutralizing sclerostin monoclonal antibodies to serve as anabolic agents in the treatment of osteoporosis.

Shah AD, Shoback D, Lewiecki EM
Int J Womens Health 2015
PMID: 26082665

Resveratrol May Increase Bone Length in Pre-pubertal Rabbits

Abstract

Resveratrol treatment delays growth plate fusion and improves bone growth in female rabbits.

Trans-resveratrol (RES), naturally produced by many plants, has a structure similar to synthetic estrogen diethylstilbestrol, but any effect on bone growth has not yet been clarified. Pre-pubertal ovary-intact New Zealand white rabbits received daily oral administration of either vehicle (control) or RES (200 mg/kg) until growth plate fusion occurred. Bone growth and growth plate size were longitudinally monitored by X-ray imaging, while at the endpoint, bone length was assessed by a digital caliper. In addition, pubertal ovariectomized (OVX) rabbits were treated with vehicle, RES or estradiol cypionate (positive control) for 7 or 10 weeks and fetal rat metatarsal bones were cultured in vitro with RES (0.03 µM-50 µM) and followed for up to 19 days. In ovary-intact rabbits, sixteen-week treatment with RES increased tibiae and vertebrae bone growth and subsequently improved final length. In OVX rabbits, RES delayed fusion of the distal tibia, distal femur and proximal tibia epiphyses and femur length and vertebral bone growth increased when compared with controls. Histomorphometrical analysis showed that RES-treated OVX rabbits had a wider distal femur growth plate, enlarged resting zone, increased number/size of hypertrophic chondrocytes, increased height of the hypertrophic zone, and suppressed chondrocyte expression of VEGF and laminin. In cultured fetal rat metatarsal bones, RES stimulated growth at 0.3 µM while at higher concentrations (10 μM and 50 μM) growth was inhibited. We conclude that RES has the potential to improve longitudinal bone growth. The effect was associated with a delay of growth plate fusion resulting in increased final length. These effects were accompanied by a profound suppression of VEGF and laminin expression suggesting that impairment of growth plate vascularization might be an underlying mechanism.

Karimian E, Tamm C, Chagin AS, Samuelsson K…
PLoS ONE 2013
PMID: 23840780 | Free Full Text

Resveratrol May Have Detrimental Bone Effects in Rats

Abstract

Resveratrol supplementation influences bone properties in the tibia of hindlimb-suspended mature Fisher 344 × Brown Norway male rats.

The deleterious bone effects of mechanical unloading have been suggested to be due to oxidative stress and (or) inflammation. Resveratrol has both antioxidant and anti-inflammatory properties; therefore, the study’s objective was to determine whether providing resveratrol in the low supplementation range for a short duration prevents bone loss during mechanical unloading. Mature (6 months old) Fischer 344 × Brown Norway male rats were hindlimb-suspended (HLS) or kept ambulatory for 14 days. Rats were provided either trans-resveratrol (RES; 12.5 mg/kg body mass per day) or deionized distilled water by oral gavage for 21 days (7 days prior to and during the 14 days of HLS). Bone mass was measured by dual energy X-ray absorptiometry. Bone microstructure was determined by microcomputed tomography. HLS of rats resulted in femur trabecular bone deterioration. Resveratrol supplementation did not attenuate trabecular bone deterioration in HLS rats. Unexpectedly, HLS-RES rats had the lowest tibial bone mineral content (P < 0.05), calcium content and lower cortical thickness (P < 0.05), and increased porosity compared with HLS/control rats. Plasma osteocalcin was also lower (P < 0.04) in HLS/resveratrol rats. There were no significant effects on plasma C-reactive protein, a marker of systemic inflammation, or total antioxidant capacity. However, HLS-RES rats showed a negative relationship (r(2) = 0.69, P = 0.02) between plasma osteocalcin and thiobarbituric acid reactive substances, a marker of lipid peroxidation. Based on the results, resveratrol supplementation of 6-month-old HLS male rats had no bone protective effects and possibly even detrimental bone effects.

Durbin SM, Jackson JR, Ryan MJ, Gigliotti JC…
Appl Physiol Nutr Metab Dec 2012
PMID: 23050779

Review: Resveratrol Pre-Clinical Evidence

Abstract

Resveratrol Supplementation Affects Bone Acquisition and Osteoporosis: Pre-Clinical Evidence Towards Translational Diet Therapy.

Osteoporosis is a major public health issue that is expected to rise as the global population ages. Resveratrol (RES) is a plant polyphenol with various anti-aging properties. RES treatment of bone cells results in protective effects, but dose translation from in vitro studies to clinically relevant doses is limited since bioavailability is not taken into account. The aims of this review is to evaluate in vivo evidence for a role of RES supplementation in promoting bone health to reduced osteoporosis risk and potential mechanisms of action. Due to multiple actions on both osteoblasts and osteoclasts, RES has potential to attenuate bone loss resulting from different etiologies and pathologies. Several animal models have investigated the bone protective effects of RES supplementation. Ovariectomized rodent models of rapid bone loss due to estrogen-deficiency reported that RES supplementation improved bone mass and trabecular bone without stimulating other estrogen-sensitive tissues. RES supplementation prior to age-related bone loss was beneficial. The hindlimb unloaded rat model used to investigate bone loss due to mechanical unloading showed RES supplementation attenuated bone loss in old rats, but had inconsistent bone effects in mature rats. In growing rodents, RES increased longitudinal bone growth, but had no other effects on bone. In the absence of human clinical trials, evidence for a role of RES on bone heath relies on evidence generated by animal studies. A better understanding of efficacy, safety, and molecular mechanisms of RES on bone will contribute to the determination of dietary recommendations and therapies to reduce osteoporosis. This article is part of a Special Issue entitled: Resveratol: Challenges in translating pre-clincial findigns to iproved patient outcomes.

Tou JC
Biochim. Biophys. Acta Oct 2014
PMID: 25315301

Review: Orthosilicic Acid

Abstract

Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy.

Silicon (Si) is the most abundant element present in the Earth’s crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

Jurkić LM, Cepanec I, Pavelić SK, Pavelić K
Nutr Metab (Lond) 2013
PMID: 23298332 | Free Full Text


The full text article (link above) has a subsection on osteoporosis:

…Interestingly, the administration of silicon in a controlled clinical study induced a significant increase in femoral bone mineral density in osteoporotic women [31]. Direct relationship between silicon content and bone formation has been shown by Moukarzel et al. [64]. They found a correlation between decreased silicon concentrations in total parenterally fed infants with a decreased bone mineral content. This was the first observation of a possible dietary deficiency of silicon in humans. A randomized controlled animal study on aged ovariectomized rats revealed that long-term preventive treatment with ch-OSA prevented partial femoral bone loss and had a positive effect on the bone turnover [65]. Dietary silicon is associated with postmenopausal bone turnover and bone mineral density at the women’s age when the risk of osteoporosis increases. Moreover, in a cohort study on 3198 middle-aged woman (50–62 years) it was shown that silicon interacts with the oestrogen status on bone mineral density, suggesting that oestrogen status is important for the silicon metabolism in bone health [66].

Silicon Deprivation Decreases Bone Collagen Formation in Rats

Abstract

Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver.

We have shown that silicon (Si) deprivation decreases the collagen concentration in bone of 9-wk-old rats. Finding that Si deprivation also affects collagen at different stages in bone development, collagen-forming enzymes, or collagen deposition in other tissues would have implications that Si is important for both wound healing and bone formation. Therefore, 42 rats in experiment 1 and 24 rats in experiment 2 were fed a basal diet containing 2 or 2.6 microg Si/g, respectively, based on ground corn and casein, and supplemented with either 0 or 10 microg Si/g as sodium metasilicate. At 3 wk, the femur was removed from 18 of the 42 rats in experiment 1 for hydroxyproline analysis. A polyvinyl sponge was implanted beneath the skin of the upper back of each of the 24 remaining rats. Sixteen hours before termination and 2 wk after the sponge had been implanted, each rat was given an oral dose of 14C-proline (1.8 microCi/100 g body wt). The total amount of hydroxyproline was significantly lower in the tibia and sponges taken from Si-deficient animals than Si-supplemented rats. The disintegrations per minute of 14C-proline were significantly higher in sponge extracts from Si- deficient rats than Si-supplemented rats. Additional evidence of aberrations in proline metabolism with Si deprivation was that liver ornithine aminotransferase was significantly decreased in Si-deprived animals in experiment 2. Findings of an increased accumulation of 14C-proline and decreased total hydroxyproline in implanted sponges and decreased activity of a key enzyme in proline synthesis (liver ornithine aminotransferase) in Si-deprived animals indicates an aberration in the formation of collagen from proline in sites other than bone that is corrected by Si. This suggests that Si is a nutrient of concern in wound healing as well as bone formation.

Seaborn CD, Nielsen FH
Biol Trace Elem Res Dec 2002
PMID: 12462748