Tag Archives: abstract

Nitroglycerin Reverses Bone Loss in Ovariectomized Rats

Abstract

Restoration of ovariectomy-induced osteopenia by nitroglycerin.

Nitric oxide (NO) is known to inhibit osteoclastic bone resorption. Previously, we demonstrated that the NO donor nitroglycerin (NG) prevented ovariectomy (OVX)-induced bone loss. The current study shows that NG restores ovariectomy-induced osteopenia. Twenty-four female Sprague-Dawley rats, 36 weeks of age, underwent OVX, and a further six rats were sham-operated. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometric (DXA) scanning prior to OVX, at 6 weeks postsurgery, and at 6 weeks posttreatment. OVX rats were then assigned to four groups and treated with either (1) vehicle, (2) 17-beta-estradiol, (3) NG (0.2 mg/kg/day), or (4) a combination of estrogen and NG (n = 6/group). During the first 6-week post-OVX period, there was a significant decrease in the BMD in all ovariectomized (OVXed) rats (-11.0%, P < 0.001). There were no significant changes in BMD during the entire 12-week period in sham-operated rats. During the second 6-week period (after developing bone loss), there was no further significant loss of BMD in OVXed controls. BMD loss and loss of femur weight produced by OVXed were restored by treatment with estrogen, NG, or the two agents together during the second 6-week period (P < 0.01). The effects of estrogen and NG together, however, were not additive. The BMD of rats treated with NG alone, at 12 weeks, was similar to that of animals treated with estrogen alone or with estrogen and NG, and was comparable to that of sham-operated rats. The increased urinary excretion of deoxypyridinolines caused by OVX was negated by estrogen, NG, and estrogen together with NG (P < 0.01). In contrast to estrogen, NG did not decrease the post-OVX-induced increase of serum osteocalcin levels, suggesting that NG may also have a positive effect on bone formation. In summary, the results suggest that the NO donor, NG, reverses the OVX-induced bone loss in rats, and these effects are likely due to decreased bone resorption and, perhaps, increased bone formation.

Wimalawansa SJ
Calcif. Tissue Int. Jan 2000
PMID: 10602846

Nitroglycerin Not Effective in Postmenopausal Bone Loss

Abstract

Transdermal nitroglycerin therapy may not prevent early postmenopausal bone loss.

Osteoporosis is common among postmenopausal women; animal studies and human pilot studies support the concept of nitric oxide (NO) donors reducing bone mineral density loss. The objective of the study was to evaluate whether NO donor, nitroglycerin, prevents postmenopausal bone loss.
 This was a 3-yr randomized, double blinded, single-center, placebo-controlled clinical trial.
The single-center study was conducted at the University of Medicine and Dentistry-Robert Wood Johnson Medical School (New Brunswick, NJ).
Participants included 186 postmenopausal women aged 40-65 yr, with lumbar bone mineral density (BMD) T-scores of 0 to -2.5.
Women, stratified by lumbar T-score (<-1.50 and >or=-1.50) and years since menopause (<or=5 and >5 yr), were randomized to receive nitroglycerin ointment (22.5 mg as Nitro-Bid) or placebo ointment received daily for 3 yr. Both groups took 630 mg daily calcium plus 400 IU vitamin D supplements.
BMD was measured at 6 months and annually by dual-energy x-ray absorptiometry. Percent change in lumbar vertebrae BMD was the primary outcome. Hip BMD, total body bone mineral content, and height were secondary outcomes.
After 36 months of therapy, changes of -2.1% in the active group (n = 88) and -2.5% in the placebo group (n = 82) in lumbar spine BMD were seen (P = 0.59; 95% confidence interval -1.001, 1.975). Secondary outcomes also did not differ by intervention arm. The active group reported more headaches compared with the placebo group (57 vs. 14%, P < 0.001). Other adverse and serious adverse events were not different.
BMD changes did not substantially differ between postmenopausal women who received the dose of nitroglycerin tested, in comparison with a placebo. Once-daily dosing with 22.5 mg of transdermal-administered nitroglycerin was not effective (compliance adjusted dose was only approximately 16 mg/d); a sub-therapeutic dose.

Wimalawansa SJ, Grimes JP, Wilson AC, Hoover DR
J. Clin. Endocrinol. Metab. Sep 2009
PMID: 19549739 | Free Full Text

Sophorae Fructus Inhibits Osteoclasts In Vitro

Abstract

Inhibition of IL-1beta and IL-6 in osteoblast-like cell by isoflavones extracted from Sophorae fructus.

Osteoporosis is recognized as one of the major hormonal deficiency diseases, especially in menopausal women and the elderly. When estrogen is reduced in the body, local factors such as IL-1beta and IL-6, which are known to be related with bone resorption, are increased and promote osteoclastogenesis, which is responsible for bone resorption. In the present study, we investigated whether glucosidic isoflavones (Isocal, PIII) extracted from Sophorae fructus affect the proliferation of osteoblasts and prevent osteoclastogenesis in vitro by attenuating upstream cytokines such as IL-1beta and IL-6 in a human osteoblastic cell line (MG-63) and in a primary osteoblastic culture from SD rat femurs. Interestingly, IL-1beta and IL-6 mRNA were significantly suppressed in osteoblast-like cells treated with 17beta-estradiol (E2) and PIII when compared to positive control (SDB), and this suppression was more effective at 10(-8)% than at the highest concentration of 10(-4)%. In addition, these were confirmed in protein levels using ELISA assay. In the cell line, the cells showed that E2 was the most effective in osteoblastic proliferation over the whole range of concentration (10(-4)%-10(-12)%), even though PIII also showed the second greatest effectiveness at 10(-8)%. Nitric oxide (NO) was significantly (p<0.05) upregulated in PIII and E2 over the concentration range 10(-6)% to 10(-8)% when compared to SDB, without showing any dose dependency. In bone marrow primary culture, we found by TRAP assay that PIII effectively suppressed osteoclastogenesis next to E2 in comparison with SDB and culture media (control). In conclusion, these results suggest that local bone-resorbing cytokines can be regulated by PIII at lower concentrations and that, therefore, PIII may preferentially induce anti-osteoporosis response by attenuating osteoclastic differentiation and by upregulating NO.

Joo SS, Kang HC, Lee MW, Choi YW…
Arch. Pharm. Res. Dec 2003
PMID: 14723336

Sophorae Fructus Inhibit Osteoclasts Rat Bone Cells

Abstract

Isoflavones extracted from Sophorae fructus upregulate IGF-I and TGF-beta and inhibit osteoclastogenesis in rat bone marrow cells.

Isoflavones have been a central subject in research on the natural phytoestrogens found in Leguminosae. Their effects on bone formation and remodeling are important in that they can act like estrogen by binding on estrogen receptors on the target cell surface. We, therefore, believed that isoflavones may help in the treatment of patients with estrogen deficiency disease such as estrogen replacement therapy (ERT) for osteoporosis. As commonly known, osteoporosis is one of the hormonal deficiency diseases, especially in menopausal women. When estrogen is no longer produced in the body a remarkable bone remodeling process occurs, and the associated events are regulated by growth factors in the osteoblast lineage. In the present study, we investigated whether isoflavones (Isocal) extracted from Sophorae fructus affect the growth factors IGF-I and TGF-beta that have been known to be related with bone formation. In the study, we found that the active control (PIII) effectively enhanced the level of nitric oxide (NO) and growth factors, and thereby inhibited osteoclastogenesis. The most efficient concentration was 10(-8)% within five days, whereas the comparative control (soybean isoflavone) was not as effective even at a lower concentration. In conclusion, the products which contain enriched glucosidic isoflavone and nutrient supplements such as shark cartilage and calcium can be used for osteoporosis therapy by enhancing the production of IGF-I and TGF-beta. Furthermore, the NO produced through endothelial constitutive NO synthase (ecNOS) may play a role in inhibiting bone reabsorption.

Joo SS, Won TJ, Kang HC, Lee DI
Arch. Pharm. Res. Jan 2004
PMID: 14969347

Sophorae Fructus Inhibits Resorption in Ovariectomized Rats

Abstract

Bone loss preventing effect of Sophorae Fructus on ovariectomized rats.

The preventive effects of Sophorae Fructus extracts (I: hot water extract and II: combination product using I) on bone loss in ovariectomized (OVX) rats were investigated. Sophorae Fructus extracts were orally administrated to OVX rats for 9 weeks. Ovariectomy caused the increase of body weight and deoxypyridinoline (Dpd: bone resorption marker) and decrease of calcium (Ca: bone formation marker) level in serum. Dpd level were significantly decreased and Ca levels were elevated at 9 weeks in Sophorae Fructus extracts administered groups after ovariectomy at a dose of 0.556 g/kg/day compared with control group. In administered groups, trabecular bone area (TBA) in the tibia and lumbar were also increased compared with control group in histomorphological analysis. The preventive or treatment effects of Sophorae Fructus extracts on bone loss in OVX rats appears to be due to suppression of bone turnover.

Shim JG, Yeom SH, Kim HJ, Choi YW…
Arch. Pharm. Res. Jan 2005
PMID: 15742817

Willow-Leafed Magnolia Inhibits Osteoclasts in Ovariectomized Mice

Abstract

Extract of Magnoliae Flos inhibits ovariectomy-induced osteoporosis by blocking osteoclastogenesis and reducing osteoclast-mediated bone resorption.

Bone homeostasis is maintained by a balance between bone resorption by osteoclasts and bone formation by osteoblasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Pro-inflammatory cytokines stimulate osteoclast differentiation and activity by increasing production of macrophage-colony stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). In this study, we investigated whether Magnoliae Flos (MF), one of the most commonly used Chinese medicinal herbs for managing rhinitis, sinusitis and headache, could effectively inhibit osteoporosis. In ovariectomized (OVX) mice compared to sham mice, the body weight increased and serum levels of alkaline phosphatase (ALP), tartrate resistant acid phosphatase 5b, calcium, and osteocalcin were significantly elevated. However, orally administrated MF extract substantially inhibited the increased body weight and serum levels of bone turnover markers, without any evidence of tissue toxicity. MF extract treatment significantly reversed the morphometric parameters of ovariectomy-induced bone loss, including trabecular bone volume, thickness, number, separation, and bone density, to almost the same levels of the sham mice. Furthermore, MF extract reduced the RANKL-mediated osteoclast differentiation and bone resorption by inhibiting the activities of matrix metalloproteinases (MMPs) and cathepsin K in mouse bone marrow macrophages. MF extract appeared to increase ALP activity in murine osteoblastic cells. Taken together, MF extract may be a beneficial supplement for the blockade of osteoporosis progression, particularly for the management of postmenopausal osteoporosis.

Jun AY, Kim HJ, Park KK, Son KH…
Fitoterapia Dec 2012
PMID: 22981503

Davallia Formosana Inhibits Osteoclasts

Abstract

Ethanol Extracts of Fresh Davallia formosana (WL1101) Inhibit Osteoclast Differentiation by Suppressing RANKL-Induced Nuclear Factor- κ B Activation.

The rhizome of Davallia formosana is commonly used to treat bone disease including bone fracture, arthritis, and osteoporosis in Chinese herbal medicine. Here, we report the effects of WL1101, the ethanol extracts of fresh rhizomes of Davallia formosana on ovariectomy-induced osteoporosis. In addition, excess activated bone-resorbing osteoclasts play crucial roles in inflammation-induced bone loss diseases, including rheumatoid arthritis and osteoporosis. In this study, we examined the effects of WL1101 on receptor activator of nuclear factor- κ B ligand (RANKL)-induced osteoclastogenesis. Treatment with WL1101 significantly inhibited RANKL-stimulated osteoclastogenesis. Two isolated active compounds, ((-)-epicatechin) or WL14 (4-hydroxy-3-aminobenzoic acid) could also inhibit RANKL-induced osteoclastogenesis. WL1101 suppressed the RANKL-induced nuclear factor- κ B (NF- κ B) activation and nuclear translocation, which is the key process during osteoclastogenesis, by inhibiting the activation of I κ B kinase (IKK) and I κ B α . In animal model, oral administration of WL1101 (50 or 200 mg/kg/day) effectively decreased the excess bone resorption and significantly antagonized the trabecular bone loss in ovariectomized rats. Our results demonstrate that the ethanol extracts of fresh rhizomes of Davallia formosana inhibit osteoclast differentiation via the inhibition of NF- κ B activation and effectively ameliorate ovariectomy-induced osteoporosis. WL1101 may thus have therapeutic potential for the treatment of diseases associated with excessive osteoclastic activity.

Lin TH, Yang RS, Wang KC, Lu DH…
Evid Based Complement Alternat Med 2013
PMID: 24191169 | Free Full Text

Davallic acid from Davallia Formosana Inhibits Bone Resorption in Ovariectomized Rats

Abstract

Antiosteoporotic activity of Davallia formosana.

In Taiwanese folk medicine, Davallia formosana is used to treat bone diseases, including osteoporosis. This study evaluated the anti-osteoporotic effect of ethanolic extract derived from Davallia formosana (DFE). In this in vitro study, we investigated the inhibitory action of DFE on RANKL-stimulated osteoclastogenesis. The in vivo effects of DFE on bone metabolism were evaluated using ovariectomized (OVX) rats orally administered DFE (200, 500 mg/kg), alendronate (2.5 mg/kg, three times a week) or its vehicle for 12 weeks.
This in vitro study demonstrated that DFE inhibited osteoclast differentiation, and also isolated the active component, (-)-epicatechin 3-O-β-D-allopyranoside (ECAP). DFE did not affect the body or vaginal weight in OVX rats. The bone mineral density and bone calcium content in OVX rats were lower in the control group showing that DFE was able to prevent significant bone loss. In addition, the three point bending test and the microcomputer tomography scanning showed that DFE treatment enhanced bone strength and inhibited the deterioration of trabecular microarchitecture. In the biochemical assay, DFE decreased urinary deoxypyridinoline and calcium concentrations, but did not inhibit serum alkaline phosphatase activities, indicating that it ameliorated bone loss via inhibition of bone reabsorption. These results suggest that DFE may represent a useful remedy for the treatment of bone reabsorption diseases such as osteoporosis. In addition, ECAP could be used as a marker compound to control the quality of DFE.

Ko YJ, Wu JB, Ho HY, Lin WC
J Ethnopharmacol Jan 2012
PMID: 22155390

Du Zhong Prevents Bone Loss in Ovariectomized Rats

Abstract

Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats.

Du-Zhong, rich in polyphenolic compounds such as lignans, phenolic acid, and flavonoids, is a kidney-tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. In the present study, we examined whether Du-Zhong cortex extract (DZCE) with graded doses exerted its preventive effects on estrogen deficiency-induced osteoporosis. Eighty 3-month-old female Sprague-Dawley rats were used and randomly assigned into sham-operated group (Sham) and five ovariectomy (OVX) subgroups, i.e. OVX with vehicle (OVX); OVX with 17alpha-ethinylestradiol (E(2), 25 microg/kg/day); OVX with DZCE of graded doses (100, 300, or 500 mg/kg/day). Daily oral administration of DZCE or E(2) started on week 4 after OVX for 16 weeks. Treatment with DZCE at higher doses (300 or 500 mg/kg/day) was found to be able to significantly prevent OVX-induced decrease in biomechanical quality of femur such as maximum stress and Young’s modulus. The mechanical changes were associated with the prevention of a further bone mineral density (BMD) decrease or even with some improvements in microarchitecture. DZCE dose-dependently inhibited total BMD decrease in the femur caused by OVX, which was accompanied by a significant decrease in skeletal remodeling, as was evidenced by the decreased levels of the bone turnover markers osteocalcin (OC), alkaline phosphatese (ALP), deoxypyridinoline (DPD), and urinary Ca and P excretions. muCT analysis of the femoral metaphysis showed that DZCE at the highest doses (500 mg/kg/day) significantly prevents decrease in bone volume/tissue volume (BV/TV), connect density (Conn.D), trabecula number (Tb.N) and trabecula thickness (Tb.Th), and increase in trabecula separation (Tb.Sp) and structure model index (SMI) in OVX rats. We conclude that 16 weeks of DZCE treatment improves bone biomechanical quality through modifications of BMD, and trabecular microarchitecture without hyperplastic effect on uterus, and it might be a potential alternative medicine for treatment of postmenopausal osteoporosis.

Zhang R, Liu ZG, Li C, Hu SJ…
Bone Sep 2009
PMID: 18835589

p-Hydroxycinnamic Acid Stimulates Osteoblastogenesis Mouse Cells

Abstract

Bioactive flavonoid p-hydroxycinnamic acid stimulates osteoblastogenesis and suppresses adipogenesis in bone marrow culture.

The bioactive flavonoid p-hydroxycinnamic acid (HCA), which is an intermediate-metabolic substance in plants and fruits, is synthesized from tyrosine. The biological effect of HCA is poorly understood. Among cinnamic acid and its related compounds, HCA has a specific-anabolic effect on bone, being found to stimulate osteoblastogenesis and to inhibit osteoclastogenesis through the suppression of NF-κB signaling, thereby preventing bone loss. Bone marrow mesenchymal stem cells give rise to ostoblasts and adipocytes. HCA might therefore have effects on osteoblastogenesis and adipogenesis in bone marrow culture. This study demonstrates (1) that HCA has stimulatory effects on osteoblastogenesis and mineralization and suppressive effects on adipogenesis in mouse bone marrow culture and (2) that HCA depresses adipogenesis in mouse 3T3-L1 preadipocytes in vitro. Such effects of HCA might be involved in the differentiation of mesenchymal stem cells.

Yamaguchi M, Baile CA, Zhu S, Shoji M
Cell Tissue Res. Dec 2013
PMID: 24026435 | Free Full Text