Category Archives: Vitamin K1

Vitamin K1 and MK-4 Stimulate Osteoblasts and Inhibit Osteoclasts In Vitro

Abstract

Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture.

Accumulating evidence indicates that menaquinone-4 (MK-4), a vitamin K(2) with four isoprene units, inhibits osteoclastogenesis in murine bone marrow culture, but the reason for this inhibition is not yet clear, especially in human bone marrow culture. To clarify the inhibitory mechanism, we investigated the differentiation of colony-forming-unit fibroblasts (CFU-Fs) and osteoclasts in human bone marrow culture, to learn whether the enhancement of the differentiation of CFU-Fs from progenitor cells might relate to inhibition of osteoclast formation. Human bone marrow cells were grown in alpha-minimal essential medium with horse serum in the presence of MK-4 until adherent cells formed colonies (CFU-Fs). Colonies that stained positive for alkaline phosphatase activity (CFU-F/ALP(+)) were considered to have osteogenic potential. MK-4 stimulated the number of CFU-F/ALP(+) colonies in the presence or absence of dexamethasone. The stimulation was also seen in vitamin K(1) treatment. These cells had the ability to mineralize in the presence of alpha-glycerophosphate. In contrast, both MK-4 and vitamin K(1) inhibited 1,25 dihydroxyvitamin D(3)-induced osteoclast formation and increased stromal cell formation in human bone marrow culture. These stromal cells expressed ALP and Cbfa1. Moreover, both types of vitamin K treatment decreased the expression of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor (RANKL/ODF) and enhanced the expression of osteoprotegerin/osteoclast inhibitory factor (OPG/OCIF) in the stromal cells. The effective concentrations were 1.0 microM and 10 microM for the expression of RANKL/ODF and OPG/OCIF respectively. Vitamin K might stimulate osteoblastogenesis in bone marrow cells, regulating osteoclastogenesis through the expression of RANKL/ODF more than through that of OPG/OCIF.

Koshihara Y, Hoshi K, Okawara R, Ishibashi H…
J. Endocrinol. Mar 2003
PMID: 12630919 | Free Full Text

Low Vitamin K1, but Not K2, Associated with Hip Fracture

Abstract

Intake of vitamin K1 and K2 and risk of hip fractures: The Hordaland Health Study.

Evidence of the effect of vitamin K on bone health is conflicting. The aim was to investigate the association between intake of vitamins K1 and K2 and subsequent risk of hip fracture in a general population sample, as well as potential effect modification by apolipoprotein E gene (APOE) status by presence of the E4 allele.
1238 men and 1569 women 71-75 years of age were included in the community-based Hordaland Health Study 1997-1999 in Western Norway. Information on hip fracture was obtained from hospitalizations in the region from enrolment until 31 December 2009. Information on intake of vitamins K1 and K2 collected at baseline was used as potential predictors of hip fracture in Cox proportional hazards regression analyses.
Participants in the lowest compared to the highest quartile of vitamin K1 intake had increased risk of suffering a hip fracture (hazard ratio (HR)=1.57 [95% CI 1.09, 2.26]). Vitamin K2 intake was not associated with hip fracture. Presence of APOE4-allele did not increase the risk of hip fracture, nor was there any effect modification with vitamin K1 in relation to risk of hip fracture.
A low intake of vitamin K1, but not K2, was associated with an increased risk of hip fractures.

Apalset EM, Gjesdal CG, Eide GE, Tell GS
Bone Nov 2011
PMID: 21839190

Review: Vitamin K and Bone Health 1998-2008

Abstract

Update on the role of vitamin K in skeletal health.

A protective role for vitamin K in bone health has been suggested based on its role as an enzymatic cofactor. In observational studies, vitamin K insufficiency is generally associated with lower bone mass and increased hip fracture risk. However, these findings are not supported in randomized controlled trials (RCT) of phylloquinone (vitamin K(1)) supplementation and bone loss at the hip in the elderly. This suggests that increased vegetable and legume intakes may simultaneously improve measures of vitamin K status and skeletal health, even though the mechanisms underlying these improvements may be independent of each other. Menaquinone-4 (vitamin K(2)), when given at pharmacological doses, appears to protect against fracture risk and bone loss at the spine. However, there are emerging data that suggest the efficacy of vitamin K supplementation on bone loss is inconclusive.

Shea MK, Booth SL
Nutr. Rev. Oct 2008
PMID: 18826451 | Free Full Text


This is a great review of the different forms of Vitamin K and their benefits for bone. The full study includes a table listing many studies dated from 1998 to 2008 with their outcomes. I highly recommend reading the full text.

MK-4 in doses of 45 mg/d is used as a pharmacological treatment for osteoporosis in Japan, so there are numerous randomized control studies that have assessed the efficacy of MK-4 supplementation on skeletal health. Such doses cannot be attained from the diet, regardless of the form of vitamin K consumed. Phylloquinone from the diet is converted to MK-4 in certain tissues, including bone, but the proportion of phylloquinone that is converted is not known and no dose-dependent data are available for this conversion.

[…]

As reviewed in an earlier volume of this journal,60 studies indicate a therapeutic dose (45 mg/day) of MK-4 has a beneficial effect on spine or metacarpal BMD and fracture61–76 (Table 2). There is also improvement in bone turnover, as measured by circulating markers of bone formation and bone resorption, in response to MK-4 supplementation studies.71,72,76,77 In a separate systematic review and analysis of randomized clinical trials assessing the influence of vitamin K supplementation on hip fracture, Cockayne et al.78 concluded that supplementation with MK-4 for longer than 6 months reduces risk for hip and vertebral fracture. Included in that analysis were 12 studies that used daily doses of 45 mg/d of MK-4. As discussed by the authors, several of the studies used for the meta-analysis lacked sufficient sample size,64–66,70,73,79 were non-placebo-controlled intervention trials,70–74,76,77,80 and/or used concurrent treatment with calcium and/or vitamin D.62,69,75,76

It was subsequently disclosed that a large unpublished surveillance study conducted in Japan (n > 3000) did not find a protective effect of MK-4 supplementation (45 mg/day) on bone loss and fracture in the elderly, and that inclusion of this study may have altered the results of the meta-analysis.81 More recently, two placebo-controlled studies with large sample sizes reported no protective effect of 45 mg/d of MK-4 on hip BMD.59,67 Prior to these two publications, the majority of MK-4 supplementation studies did not report hip BMD as an outcome (Table 2). Given the heterogeneous quality of the studies used and considering the null findings of more recent, larger, placebo-controlled trials and unpublished surveillance data, prior systematic reviews and meta-analyses may need to be revisited.

 

Review: Vitamin K May Reduce Fractures

Abstract

Vitamin K and bone health.

Vitamin K has been purported to play an important role in bone health. It is required for the gamma-carboxylation of osteocalcin (the most abundant noncollagenous protein in bone), making osteocalcin functional. There are 2 main forms (vitamin K1 and vitamin K2), and they come from different sources and have different biological activities. Epidemiologic studies suggest a diet high in vitamin K is associated with a lower risk of hip fractures in aging men and women. However, randomized controlled trials of vitamin K1 or K2 supplementation in white populations did not increase bone mineral density at major skeletal sites. Supplementation with vitamin K1 and K2 may reduce the risk of fractures, but the trials that examined fractures as an outcome have methodological limitations. Large well-designed trials are needed to compare the efficacies of vitamin K1 and K2 on fractures. We conclude that currently there is not enough evidence to recommend the routine use of vitamin K supplements for the prevention of osteoporosis and fractures in postmenopausal women.

Hamidi MS, Gajic-Veljanoski O, Cheung AM
J Clin Densitom. 2013 Oct-Dec
PMID: 24090644

Vitamin K1 and K2 Reversed Bone Loss in Obese Mice

Abstract

Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice.

Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.

Kim M, Na W, Sohn C
J Clin Biochem Nutr Sep 2013
PMID: 24062608 | Free Full Text


Vitamin K is related to blood coagulation, assisting the promotion of OC carboxylation of γ-glutamic acid, which is produced by osteoblasts, and aiding in bone formation by coupling carboxylated OC with phosphine.(15) Many studies have demonstrated that low intake of vitamin K decreases bone density, and that this is a factor that increases osteoporosis and bone fracture.(16) In the study by Booth et al.,(17) low intake of vitamin K1 led to low bone density, and was a factor for increased risk of bone fracture. When vitamin K1 was administered to human bone marrow culture, osteoclast formation was inhibited.(13) After administering vitamin K2 to osteoblasts, real-time gene expression analysis found that the OC, OPG, and RANKL genes were expressed, demonstrating that vitamin K2 has an influence on osteoblasts and osteoclasts.(18) In addition, vitamin K2 supplementation in patients with osteoporosis necessitated by the administration of glucocorticoids inhibited OPG decrease, and had effects of bone loss prevention.(19) Vitamin K2 supplementation in patients with rheumatoid arthritis accompanied with osteoporosis decreased RANKL levels and inhibited osteoclast activation.(20) Therefore, vitamin K affects bone condition both in healthy adults and in patients with specific diseases.

[…]

The results of the bone density analysis revealed an increase with the vitamin K1 and K2 supplementation in high-fat diets. Studies on the relationship between bone density and vitamin K generally have used dual-energy x-ray absorptiometry or ultrasonic densitometry,(32) but this study used high-resolution 3D micro-CT to analyze the morphologic microstructure of trabecular bone. In the study by Fujikawa et al.,(24) the Tb.N increased when vitamin K2 and calcium were fed to ovariectomized mice, and the Tb.Sp decreased. Yamaguchi et al.,(33) also fed vitamin K2 to ovariectomized rats, and reported that it prevented bone loss. These two studies used osteoporosis-induced animals, and the methods differed from those in this study, in which obesity-induced mice were fed vitamin K supplements. In this study, even though there was no significantly statistical difference in the microstructure analysis between the groups, but BV, Tb.N, and Tb.Sp were seemed to be better in the vitamin K2-supplemented group than those in the HF group, indicating that vitamin K2 may play a role in protecting the structures of trabecular bone.

[…]

The effects of vitamin K1 and K2 supplementation in normal diet on bone metabolism were not statistically significant. However, vitamin K1 and K2 supplementation in a high-fat diet could prevent a decrease in bone density, and vitamin K2 had a greater effect on this parameter. Therefore, vitamin K2 increases OPG, a marker related to bone density and the metabolism of osteoclasts and osteoblasts, and it decreases RANKL, and thus has an influence on bone metabolism. This study has showed the effects of vitamin K on bone density and metabolism in animals, but further studies are needed to determine whether the same holds true for obese humans. Future studies would need to perform bone measurement and biochemical examinations on the bone microstructures and metabolism in humans.

 

Vitamin K1 at 600mcg for 6 Months Doesn’t Significantly Increase Bone Density in Women

Abstract

Vitamin K supplementation does not significantly impact bone mineral density and biochemical markers of bone in pre- and perimenopausal women.

Because of its role in osteoblastic metabolism, vitamin K has been studied with respect to bone. However, there has been limited research examining the influence of long-term vitamin K supplementation on bone mineral density (BMD). Therefore, the purpose of this study was to assess the impact of 6 months of vitamin K supplementation on BMD and biomarkers of bone in pre- and perimenopausal women. Based on previous work, we hypothesized that vitamin K would improve BMD and biochemical markers of bone formation. A double-blind, placebo-controlled, randomized trial is an effective way to study the impact of long-term supplementation. Thus, 14 pre- and perimenopausal women, 25 to 50 years of age, were randomly assigned to an experimental group (E) that received 600 microg/d of vitamin K in the form of phylloquinone (K(1)) or a control group (C) that received identical-looking placebo tablets. Regional BMD and percent body fat, measured by dual-energy x-ray absorptiometry, and serum osteocalcin and urinary N-telopeptide levels were all assessed at 0, 3, and 6 months. When BMD was measured across time, C had a significant increase (P = .011) in greater trochanter BMD compared to E. The E group had a nonsignificant increase (P = .067) in shaft BMD compared to the C group. There was no significant difference between E and C in serum osteocalcin concentrations over time. Urinary N-telopeptide levels increased significantly over time in E compared to C (P = .008). Six months of 600 microg/d vitamin K(1) supplementation did not improve regional BMD in this group of pre- and perimenopausal women.

Volpe SL, Leung MM, Giordano H
Nutr Res Sep 2008
PMID: 19083462

Review: Vitamin K1 Improves Bone Strength and Reduces Fractures

Abstract

[Postmenopausal osteoporosis. Role of vitamin K in the prevention of osteoporosis].

Low vitamin K1 intake and low plasma vitamin K1 levels are associated with low bone mineral density (BMD) and increased osteoporotic fracture risk in postmenopausal women. Despite the lack of a significant change or the occurrence of only a modest increase in bone mineral density, high-dose vitamin K(1) supplementation improved indices of bone strength in the femoral neck and reduced the incidence of clinical fractures.

Malinova M
Akush Ginekol (Sofiia) 2013
PMID: 24294745

Review: Vitamin K and Bone Health in Postmenopausal Women

Abstract

Effects of vitamin K in postmenopausal women: mini review.

Possible benefits of vitamin K on bone health, fracture risk, markers of bone formation and resorption, cardiovascular health, and cancer risk in postmenopausal women have been investigated for over three decades; yet there is no clear evidence-based universal recommendation for its use. Interventional studies showed that vitamin K1 provided significant improvement in undercarboxylated osteocalcin (ucOC) levels in postmenopausal women with normal bone mineral density (BMD); however, there are inconsistent results in women with low BMD. There is no study showing any improvement in bone-alkaline-phosphatase (BAP), n-telopeptide of type-1 collagen (NTX), 25-hydroxy-vitamin D, and urinary markers. Improvement in BMD could not be shown in the majority of the studies; there is no interventional study evaluating the fracture risk. Studies evaluating the isolated effects of menatetrenone (MK-4) showed significant improvement in osteocalcin (OC); however, there are inconsistent results on BAP, NTX, and urinary markers. BMD was found to be significantly increased in the majority of studies. The fracture risk was assessed in three studies, which showed decreased fracture risk to some extent. Although there are proven beneficial effects on some of the bone formation markers, there is not enough evidence-based data to support a role for vitamin K supplementation in osteoporosis prevention among healthy, postmenopausal women receiving vitamin D and calcium supplementation. Interventional studies investigating the isolated role of vitamin K on cardiovascular health are required. Longterm clinical trials are required to evaluate the effect of vitamin K on gynecological cancers. MK-4 seems safe even at doses as high as 45 mg/day.

Guralp O, Erel CT
Maturitas Mar 2014
PMID: 24342502

Vitamin K1 Associated With Bone Health in Women

Abstract

Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms.

Polymorphisms in the apolipoprotein E (APOE) gene are associated with fracture risk, and a potential mechanism is through vitamin K transport.
We investigated the relation between dietary vitamin K(1) intake, APOE polymorphisms, and markers of bone health. We measured bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN) in a cohort of Scottish women aged 49-54 y in 1990-1994 (baseline) and in 1997-2000 (visit 2). At visit 2, bone markers (urinary pyridinoline crosslinks and serum N-terminal propeptide of type 1 collagen) were measured, 3199 women completed a food-frequency questionnaire, and 2721 women were genotyped for APOE.
Compared with quartile 3 (Q3) of energy-adjusted vitamin K(1) intake (mean: 116 microg/d), women in the lowest quartile (mean: 59 microg/d) had lower BMD (analysis of variance; FN, Q1: 0.831 +/- 0.122 g/cm(2); Q3: 0.850 +/- 0.126 g/cm(2); P < 0.001; LS, Q1: 1.000 +/- 0.170 g/cm(2); Q3: 1.020 +/- 0.172 g/cm(2); P = 0.009), remaining significant at the FN after adjustment for age, weight, height, menopausal status or use of hormone replacement therapy, socioeconomic status, and physical activity (P = 0.04). Vitamin K(1) intake was associated with reduced concentrations of pyridinoline crosslinks (Q1: 5.4 +/- 2.0 nmol/mmol; Q4: 5.1 +/- 1.9 nmol/mmol; P = 0.003). Carriers of the E2 allele had greater LS BMD at visit 2 and lost less BMD than did carriers of the E4 allele (E2: -0.50 +/- 1.22%/y; E4: -0.71 +/- 1.17%/y; P = 0.05). After adjustment for confounders, the P value for BMD loss (0.03 for LS and 0.04 for FN) did not reach the level of significance required for multiple testing (P = 0.012). No interaction was observed between dietary vitamin K and APOE on BMD.
Vitamin K(1) intake was associated with markers of bone health, but no interaction was observed with APOE alleles on BMD or markers of bone turnover.

Macdonald HM, McGuigan FE, Lanham-New SA, Fraser WD…
Am. J. Clin. Nutr. May 2008
PMID: 18469278 | Free Full Text

Vitamin K1 May Help Prevent Fractures, But Does Not Improve Bone Density in Women with Osteopenia

Abstract

Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial.

Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.
This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by -1.28% and -1.22% (p = 0.84) (difference of -0.06%; 95% confidence interval [CI] -0.67% to 0.54%) at the lumbar spine and -0.69% and -0.88% (p = 0.51) (difference of 0.19%; 95% CI -0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.
Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers.

Cheung AM, Tile L, Lee Y, Tomlinson G…
PLoS Med. Oct 2008
PMID: 18922041 | Free Full Text