Category Archives: Prebiotics

Review: Prebiotics in Adolescents

Abstract

A prebiotic substance persistently enhances intestinal calcium absorption and increases bone mineralization in young adolescents.

A number of short-term (9 days to 5 weeks) studies have reported that non-digestible. oligosaccharides enhance intestinal calcium absorption. Recent interesting data from an intervention trial in adolescents (9-13 years of age) suggest that a non-digestible oligosaccharide can persistently stimulate calcium absorption over 12 months and can also enhance bone mineralization during pubertal growth.

Cashman KD
Nutr. Rev. Apr 2006
PMID: 16673754

FOS Helps Dentin Formation in Rats

Abstract

Fructooligosaccharide consumption improves the decreased dentin formation and mandibular defects following gastrectomy in rats.

We examined the effects of fructooligosaccharides (FOS) consumption on gastrectomy-evoked osteopenia and disorders of dentin formation in rats.
Male Sprague-Dawley rats (n = 28, 35-day old) were equally divided into two groups; sham-operated and gastrectomized, and sham-operation or total gastrectomy was performed. Four weeks after each surgery, the rats were divided into two sub-groups (n = 7 each); with or without 7.5% FOS-feeding for 6 weeks. Backscattered electron images of the mandibular sections were taken to calculate trabecular bone area, cortical bone area and total scan area. Thereafter, the dentin formation rate in maxilla were calculated using a fluorescent microscope.
Trabecular bone area and cortical bone area in GX rats were markedly decreased. FOS-feeding significantly counteracted this reduction, but not to the level seen in sham-operated rats. Total scan area in gastrectomized groups was significantly decreased. The dentin formation rate was not statistically different among the groups, except the gastrectomized group.
These results suggest that FOS consumption partially restored osteopenia and almost completely restored the reduction in dentin formation following gastrectomy in rats.

Morohashi T, Sano T, Sakai N, Yamada S
Oral Dis Nov 2005
PMID: 16269026

COS, Like FOS, Increases Calcium Retention, Bone Density and Strength in Rats

Abstract

Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats.

Chitosan polymer with deacetylation degree of 93% was hydrolyzed with an endo-type chitosanase (35,000 U/g protein) with substrate to enzyme ratio of 1 to 1.5 for 18 h in a batch reactor, and then the resultant hydrolysates were fractionated into four different molecular weights using an ultrafiltration (UF) membrane reactor system. An in vitro study elucidated that four kinds of chitooligosaccharides (COSs) could efficiently inhibit the formation of insoluble calcium salts in the neutral pH. In vivo effects of COSs on Ca bioavailability were further studied in the osteoporosis modeling rats induced by ovariectomy and concurrent low calcium intake. During the experimental period corresponding to the menopause with the osteoporosis disease, calcium retention was increased and bone turnover was decreased by COS IV supplementation in the ovariectomized (OVX) rats. After the low Ca diet, COS IV diet including both normal level of calcium and vitamin D significantly decreased calcium loss in feces and increased calcium retention compared to the control diet. The levels of femoral total calcium, bone mineral density (BMD), and femoral strength were also significantly increased by the COS IV diet in a similar level to those of CPP diet group. In the present study, the results proved the beneficial effects of low molecular chitooligosaccharide (COS IV) in preventing negative mineral balance.

Jung WK, Moon SH, Kim SK
Life Sci. Jan 2006
PMID: 16137703

Inulin Increases Calcium Absorption and Bone Mineralization in Adolescents

Abstract

A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents.

Short-term studies in adolescents have generally shown an enhancement of calcium absorption by inulin-type fructans (prebiotics). Results have been inconsistent; however, and no studies have been conducted to determine whether this effect persists with long-term use. The objective was to assess the effects on calcium absorption and bone mineral accretion after 8 wk and 1 y of supplementation with an inulin-type fructan.
Pubertal adolescents were randomly assigned to receive 8 g/d of a mixed short and long degree of polymerization inulin-type fructan product (fructan group) or maltodextrin placebo (control group). Bone mineral content and bone mineral density were measured before randomization and after 1 y. Calcium absorption was measured with the use of stable isotopes at baseline and 8 wk and 1 y after supplementation. Polymorphisms of the Fok1 vitamin D receptor gene were determined.
Calcium absorption was significantly greater in the fructan group than in the control group at 8 wk (difference: 8.5 +/- 1.6%; P < 0.001) and at 1 y (difference: 5.9 +/- 2.8%; P = 0.04). An interaction with Fok1 genotype was present such that subjects with an ff genotype had the least initial response to fructan. After 1 y, the fructan group had a greater increment in both whole-body bone mineral content (difference: 35 +/- 16 g; P = 0.03) and whole-body bone mineral density (difference: 0.015 +/- 0.004 g/cm(2); P = 0.01) than did the control group.
Daily consumption of a combination of prebiotic short- and long-chain inulin-type fructans significantly increases calcium absorption and enhances bone mineralization during pubertal growth. Effects of dietary factors on calcium absorption may be modulated by genetic factors, including specific vitamin D receptor gene polymorphisms.

Abrams SA, Griffin IJ, Hawthorne KM, Liang L…
Am. J. Clin. Nutr. Aug 2005
PMID: 16087995 | Free Full Text

Review: Inulin and FOS Mechanisms

Abstract

Inulin, oligofructose and bone health: experimental approaches and mechanisms.

Inulin-type fructans have been proposed to benefit mineral retention, thereby enhancing bone health. Many, but not all, experimental animal studies have shown increased mineral absorption by feeding non-digestible oligosaccharides. Possible reasons for inconsistencies are explored. A few studies have reported an enhanced bone mineral density or content. Bone health can be evaluated in chronic feeding studies with bone densitometry, bone breaking strength, bone mineral concentration and bone structure. Isotopic Ca tracers can be used to determine the point of metabolism affected by feeding a functional food ingredient. These methods and the effects of feeding inulin-type fructose are reviewed. Inulin-type fructans enhance Mg retention. Chicory long-chain inulin and oligofructose enhance femoral Ca content, bone mineral density and Ca retention through enhanced Ca absorption and suppressed bone turnover rates, but it is not bone-promoting under all conditions.

Weaver CM
Br. J. Nutr. Apr 2005
PMID: 15877902

Review: Inulin, Isoflavones, Calcium

Abstract

Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis.

If the primary role of diet is to provide sufficient nutrients to meet the metabolic requirements of an individual, there is an emerging rationale to support the hypothesis that, by modulating specific target functions in the body, it can help achieve optimal health. Regarding osteoporosis prevention, since Ca is most likely to be inadequate in terms of dietary intake, every strategy targeting an improvement in Ca absorption is very interesting. Actually, this process may be susceptible to manipulation by fermentable substrates. In this light, inulin-type fructans are very interesting, even if we need to gather more data targeting bone metabolism before health professionals can actively advocate their consumption to prevent senile osteoporosis. Besides targeting the prevention of postmenopausal osteoporosis, inulin-type fructans still remain a source for putative innovative dietary health intervention. Indeed, given in combination with isoflavones, they may have a potential for maintaining or improving the bone mass of human subjects, by modulating the bioavailability of phyto-oestrogens.

Coxam V
Br. J. Nutr. Apr 2005
PMID: 15877884

FOS Increases Efficiency of Isoflavones in Rats

Abstract

Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat.

Isoflavones (IF) have been increasingly implicated for use in the prevention of osteoporosis. As their bioavailability could be improved by modulating intestinal microflora, the present study was undertaken to investigate whether IF and fructooligosaccharides (FOS), which are known to modify large-bowel flora and metabolism, may exhibit a cooperative bone-sparing effect. This work was carried out on 3-month-old Wistar rats assigned to 12 groups: 2 SH (sham-operated) and 10 OVX (ovariectomized). Animals received a diet for 90 days containing total IF (Prevastei HC, Central Soya) at 0 (OVX and SH), 10 (IF10), 20 (IF20), 40 (IF40), or 80 (IF80) microg/g body weight per day. FOS (Actilight, Beghin-Meiji) were orally given to half of the groups, (OVX FOS), (IF10 FOS), (IF20 FOS), (IF40 FOS), (IF80 FOS), and (SH FOS). Isoflavones exhibited a bone-sparing effect as soon as consumption reached 20 microg/g/day, whereas only the highest dose induced a weak uterotrophic activity. Indeed, total femoral bone mineral density (BMD) was significantly enhanced (compared with that of OVX rats), as was the metaphyseal compartment. Bone strength was improved as well. As far as the FOS diet is concerned, addition of prebiotics significantly raised the efficiency of the IF protective effect on both femoral BMD and mechanical properties. The trend toward higher BMD levels with the lowest IF dose (IF10) even reached a significant level when FOS were added. This effect could be explained by a reduced bone resorption. In conclusion, daily IF consumption prevented castration-induced osteopenia by decreasing bone resorption when given at 20, 40, or 80 microg (total isoflavones)/g/day. Simultaneous FOS consumption improved IF protective effect on the skeleton, with the lowest IF dose becoming efficient. Enhancement of IF bioavailability, following FOS fermentation, is probably involved.

Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C…
Calcif. Tissue Int. Aug 2004
PMID: 15164148

Review: Carbs, FOS and Inulin Beneficial for Bones

Abstract

Osteoporosis and intake of carbohydrates.

Adequate energy intake including carbohydrates is essential to maintain bone mass. Emaciation along with deficiency in nutrients, such as calcium, vitamin D, and protein is a significant risk factor for bone loss, and should be avoided.
However, there is no clinical evidence that shows the direct effects of carbohydrate on bone mass. On the other hand, excessive intake of carbohydrates results in obesity, which causes other metabolic diseases such as diabetes mellitus (DM). Therefore, dietary regimen must be balanced in general, and complications and conditions of individual patients should be taken well into account. In addition, energy intake is a basis for adequate exercise in order to maintain physical activity and ideal body weight, which will further decrease the risk of bone fracture. Some indigestible carbohydrates, such as inulin and oligofructose, are shown to increase the availability of minerals from foods, and thus can be beneficial to bone mass.

Nakayama K, Katayama S
Clin Calcium Apr 2005
PMID: 15802784

FOS + Inulin Increase Calcium Absorption and Bone Parameters in Rats

Abstract

Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats.

Nondigestible oligosaccharides (NDO) including inulin and fructooligosaccharides (FOS) have been reported to stimulate calcium absorption. Here we report the effect of a mixture of inulin and FOS (Raftilose Synergy 1, Orafti) on calcium and bone metabolism in ovariectomized (OVX) rats. OVX rats (6 mo old) were fed a semipurified diet for 3 mo in our animal care laboratory for stabilization after ovariectomy. They were then divided into two groups (n = 13/group) and fed either a control or a NDO-supplemented diet (55 g/kg) for 21 d. Catheters were placed in their jugular veins. After 2 d, a tracer ((45)Ca) was administered by gavage or i.v. and blood was sampled for up to 300 min. Urine and fecal samples were collected for 4 d after (45)Ca administration. Femurs were measured for bone mineral density (BMD), breaking strength, and total calcium. Calcium absorption, femoral calcium content, BMD, and bone balance (V(bal)) were significantly increased (P < 0.05) by NDO, whereas the bone resorption rate relative to the bone formation rate was significantly depressed by NDO. We conclude that feeding NDO at 5.5 g/100 g for 21 d has a positive effect on calcium absorption and retention in ovariectomized rats.

Zafar TA, Weaver CM, Zhao Y, Martin BR…
J. Nutr. Feb 2004
PMID: 14747679 | Free Full Text


Note, unfortunately, there was no improvement in breaking strength.

Review: Adding Calcium, Magnesium, Vitamin D, Vitamin K, Inulin, Protein, and Phytoestrogens to Foods

Abstract

Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis.

Osteoporosis is a growing global problem. The health care costs and decreased productivity and quality of life are staggering. Much research is invested in life-style approaches to build peak bone mass during growth to prevent osteoporosis as well as to treat the disease in later life. Functional foods have enjoyed a niche in bone health. Foods fortified with Ca are most popular. Other bone nutrients such as vitamin D, Mg and vitamin K are sometimes added. Future products are likely to include enhancers of Ca absorption such as inulin or whey proteins. Dietary factors that reduce urinary Ca loss (plant proteins) or suppress bone resorption (possibly phyto-oestrogens) are also gaining attention. Methodologies for evaluating the effectiveness of functional foods on bone health include measures of bone quality such as bone densitometry or measures of Ca metabolism, particularly absorption. Biochemical markers for bone turnover are less satisfactory for diet-related effects. Use of a rare isotope, 41Ca, and accelerator mass spectrometry offers a new approach for assessing the ability of functional foods to suppress bone resorption.

Weaver CM, Liebman M
Br. J. Nutr. Nov 2002
PMID: 12495464