Category Archives: Phytoestrogens

FOS + Soy Effects Additive For Some Parameters in Rats

Abstract

The effects of fructo-oligosaccharides in combination with soy protein on bone in osteopenic ovariectomized rats.

The intestinal microflora is important in rendering soy isoflavones bioavailable by facilitating their conversion to equol. Hence, substances that can modulate the intestinal microflora could affect the bioavailability of isoflavones. In this study, we examined the effects of fructo-oligosaccharides (FOS), a prebiotic, on enhancing the effects of soy isoflavones on bone in ovariectomized osteopenic female rats.
Sixty-three 9-month-old female Sprague-Dawley rats were either sham-operated (Sham; one group) or ovariectomized (Ovx; four groups) and were fed a control diet for 3 months to induce bone loss. After bone loss was confirmed via dual-energy x-ray absorptiometry, rats were placed on dietary treatment for 4 months. The Sham and one Ovx group received a control diet, and the remaining Ovx groups received either a soy protein-based diet (Soy), a FOS-supplemented diet (FOS), or a soy protein-based and FOS-supplemented diet (Soy+FOS). Before the termination of the study, whole-body bone mineral density (BMD) and bone mineral content (BMC) were assessed under anesthesia. Immediately after euthanasia, bone specimens were collected for the assessments of BMD, BMC, and biomechanical and microarchitectural properties.
Whole-body BMD values were significantly higher in FOS and Soy+FOS groups compared with Ovx controls. The tibial BMC increased by 10%, 6%, and 4% in Soy, FOS, and Soy+FOS groups, respectively, compared to the Ovx control group. FOS and FOS+Soy treatments had the most pronounced effects in enhancing lumbar BMC and BMD. The FOS+Soy combination effectively improved tibial microarchitectural properties by enhancing trabecular number and lowering trabecular separation compared with Ovx controls. The effects of dietary treatments on lumbar microarchitectural properties were minimal and biomechanical properties of the femur were not affected by any of the dietary treatments.
Our findings suggest that, although incorporation of either soy or FOS in the diet of Ovx rats can improve BMD of the whole body, tibiae, and lumbar vertebrae, their combination had no any additive effects. However, in terms of microarchitecture, the combination of soy and FOS had a greater effect in reversing the loss of certain microarchitectural parameters such as tibial trabecular number, separation, and thickness.

Devareddy L, Khalil DA, Korlagunta K, Hooshmand S…
Menopause
PMID: 16837891

Review: Inulin, Isoflavones, Calcium

Abstract

Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis.

If the primary role of diet is to provide sufficient nutrients to meet the metabolic requirements of an individual, there is an emerging rationale to support the hypothesis that, by modulating specific target functions in the body, it can help achieve optimal health. Regarding osteoporosis prevention, since Ca is most likely to be inadequate in terms of dietary intake, every strategy targeting an improvement in Ca absorption is very interesting. Actually, this process may be susceptible to manipulation by fermentable substrates. In this light, inulin-type fructans are very interesting, even if we need to gather more data targeting bone metabolism before health professionals can actively advocate their consumption to prevent senile osteoporosis. Besides targeting the prevention of postmenopausal osteoporosis, inulin-type fructans still remain a source for putative innovative dietary health intervention. Indeed, given in combination with isoflavones, they may have a potential for maintaining or improving the bone mass of human subjects, by modulating the bioavailability of phyto-oestrogens.

Coxam V
Br. J. Nutr. Apr 2005
PMID: 15877884

FOS Increases Efficiency of Isoflavones in Rats

Abstract

Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat.

Isoflavones (IF) have been increasingly implicated for use in the prevention of osteoporosis. As their bioavailability could be improved by modulating intestinal microflora, the present study was undertaken to investigate whether IF and fructooligosaccharides (FOS), which are known to modify large-bowel flora and metabolism, may exhibit a cooperative bone-sparing effect. This work was carried out on 3-month-old Wistar rats assigned to 12 groups: 2 SH (sham-operated) and 10 OVX (ovariectomized). Animals received a diet for 90 days containing total IF (Prevastei HC, Central Soya) at 0 (OVX and SH), 10 (IF10), 20 (IF20), 40 (IF40), or 80 (IF80) microg/g body weight per day. FOS (Actilight, Beghin-Meiji) were orally given to half of the groups, (OVX FOS), (IF10 FOS), (IF20 FOS), (IF40 FOS), (IF80 FOS), and (SH FOS). Isoflavones exhibited a bone-sparing effect as soon as consumption reached 20 microg/g/day, whereas only the highest dose induced a weak uterotrophic activity. Indeed, total femoral bone mineral density (BMD) was significantly enhanced (compared with that of OVX rats), as was the metaphyseal compartment. Bone strength was improved as well. As far as the FOS diet is concerned, addition of prebiotics significantly raised the efficiency of the IF protective effect on both femoral BMD and mechanical properties. The trend toward higher BMD levels with the lowest IF dose (IF10) even reached a significant level when FOS were added. This effect could be explained by a reduced bone resorption. In conclusion, daily IF consumption prevented castration-induced osteopenia by decreasing bone resorption when given at 20, 40, or 80 microg (total isoflavones)/g/day. Simultaneous FOS consumption improved IF protective effect on the skeleton, with the lowest IF dose becoming efficient. Enhancement of IF bioavailability, following FOS fermentation, is probably involved.

Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C…
Calcif. Tissue Int. Aug 2004
PMID: 15164148

Review: Adding Calcium, Magnesium, Vitamin D, Vitamin K, Inulin, Protein, and Phytoestrogens to Foods

Abstract

Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis.

Osteoporosis is a growing global problem. The health care costs and decreased productivity and quality of life are staggering. Much research is invested in life-style approaches to build peak bone mass during growth to prevent osteoporosis as well as to treat the disease in later life. Functional foods have enjoyed a niche in bone health. Foods fortified with Ca are most popular. Other bone nutrients such as vitamin D, Mg and vitamin K are sometimes added. Future products are likely to include enhancers of Ca absorption such as inulin or whey proteins. Dietary factors that reduce urinary Ca loss (plant proteins) or suppress bone resorption (possibly phyto-oestrogens) are also gaining attention. Methodologies for evaluating the effectiveness of functional foods on bone health include measures of bone quality such as bone densitometry or measures of Ca metabolism, particularly absorption. Biochemical markers for bone turnover are less satisfactory for diet-related effects. Use of a rare isotope, 41Ca, and accelerator mass spectrometry offers a new approach for assessing the ability of functional foods to suppress bone resorption.

Weaver CM, Liebman M
Br. J. Nutr. Nov 2002
PMID: 12495464

FOS Increases Isoflavone Bioavailability in Mice

Abstract

A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice.

Fructooligosaccharides (FOS) stimulate the growth of bifidobacteria, which cleave isoflavone conjugates to yield the corresponding aglycones and metabolites. In a previous study, FOS modified the absorption and enterohepatic recirculation of isoflavones in rats. In the present study, we determined the effect of the combination of dietary FOS and isoflavone conjugates on bone mass in ovariectomized (OVX) and surgical control mice. After undergoing OVX or sham operation, female ddY mice (8 wk old, n = 64) were randomly assigned to four groups: a purified control diet (AIN-93G) group, a FOS diet (AIN-93G + 5% FOS) group, an isoflavone diet (AIN-93G + 0.2% isoflavone conjugates) group, or a FOS and isoflavone diet (AIN-93G + 5% FOS + 0.2% isoflavone conjugates) group. After 6 wk, the mice were killed and the blood and femora were sampled immediately. In OVX mice, both isoflavone conjugates and FOS prevented femoral bone loss. An additive effect of dietary isoflavone conjugates and FOS was observed by dual-energy X-ray absorptiometry in the distal part of the femur and in trabecular bone, by peripheral quantitative computed tomography. Moreover, FOS increased cecal beta-glucosidase activity and equol production from daidzein in both OVX and surgical control mice fed isoflavone conjugates. These results suggest that FOS increase the bioavailability of isoflavones, leading to cooperative effects in the prevention of osteopenia in OVX mice.

Ohta A, Uehara M, Sakai K, Takasaki M…
J. Nutr. Jul 2002
PMID: 12097691 | Free Full Text